Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on photoluminescence properties of 1.05 eV InGaAsP layers grown by molecular beam epitaxy

Yang Wen-Xian Ji Lian Dai Pan Tan Ming Wu Yuan-Yuan Lu Jian-Ya Li Bao-Ji Gu Jun Lu Shu-Long Ma Zhong-Quan

Citation:

Study on photoluminescence properties of 1.05 eV InGaAsP layers grown by molecular beam epitaxy

Yang Wen-Xian, Ji Lian, Dai Pan, Tan Ming, Wu Yuan-Yuan, Lu Jian-Ya, Li Bao-Ji, Gu Jun, Lu Shu-Long, Ma Zhong-Quan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The photoluminescence properties of InGaAsP films with a bandgap energy of 1.05 eV for quadruple-junction solar cells grown by molecular beam epitaxy (MBE) are investigated. We make the excitation intensity and temperature dependence of continuous-wave photoluminescence (cw-PL) measurements. The PL peak position is 1.1 eV at 10 K, and almost independent of the excitation power, but the integrated intensity of the PL emission peaks is roughly proportional to the excitation power. The shift of peak position with temperature follows the band gap shrinking predicted by the well-known Varshni's empirical formula. These results indicate that the intrinsic transition dominates the light emission of the InGaAsP material. In addition, we also make the time-resolved photoluminescence (TRPL) measurements to determine the carrier luminescence relaxation time in InGaAsP. PL spectra suggest that the relaxation time is 10.4 ns at room temperature and increases with increasing excitation power, which demonstrates the high quality of the InGaAsP material. However, the relaxation time shows an S-shape variation with increasing temperature: it increases at temperatures lower than 50 K, and then decreases between 50–150 K, and increases again when temperature is over 150 K. According to the effect of temperature and the non-radiative recombination center concentration on the carrier relaxation time, the recombination mechanism of S-shape variation can be explained by the carrier relaxation dynamics.
      Corresponding author: Lu Shu-Long, sllu2008@sinano.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176128, 61376081, 61274076), the National High Technology Research and Development Program of China (Grant No. 2013AA050403), the Application Foundation of Suzhou, China (Grant No. SYG201437), and the SINANO-SONY Joint Program (Grant Nos. Y1AAQ11002, Y2AAQ11004).
    [1]

    Friedman D J, Kurtz S R, Bertness K A, Kibbler A E, Kramer C, Olson J M, King D L, Hansen B R, Snyder J K 1995 Prog Photovolt. 3 47

    [2]

    Yamaguchi M 2003 Sol. Energy Mater. Sol. Cells 75 261

    [3]

    Dimroth F, Beckert R, Meusel M, Schubert U, Bett A W 2001 Prog. Photovolt. 9 165

    [4]

    Wang J Z, Huang Q L, Xu X, Quan B G, Luo J H, Zhang Y, Ye J S, Li D M, Meng Q B, Yang G Z 2015 Chin. Phys. B 24 054201

    [5]

    Yang J, Zhao D G, Jiang D S, Liu Z S, Chen P, Li L, Wu L L, Le L C, Li X J, He Xiao-G, Wang H, Zhu J J, Zhang S M, Zhang B S, Yang H 2014 Chin. Phys. B 23 068801

    [6]

    Wang H X, Zheng X H, Wu Y Y, Gan X Y, Wang N M, Yang H 2013 Acta Phys. Sin. 62 218801 (in Chinese) [王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉 2013 62 218801]

    [7]

    Green M A, Emery K, Hishikawa Y, Warta W 2013 Prog. Photovolt: Res. Appl. 21 827

    [8]

    Marti A, Araujo G L 1996 Sol. Energy Mater. Sol. Cells 43 203

    [9]

    Shockley W, Queisser H 1961 J. Appl. Phys. 32 510

    [10]

    Law D C, King R R, Yoon H, Archer M J, Boca A, Fetzer C M, Mesropian S, Isshiki T, Haddad M, Edmondson K M, Bhusari D, Yena J, Sherif R A, Atwater H A, Karama N H 2010 Sol. Energy Mater. Sol. Cells 94 1314

    [11]

    Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, Tibbits N T D, Oliva E, Siefer G, Schachtner M, Wekkeli A, Bett A W, Krause R, Piccin M, Blanc N, Drazek C, Guiot E, Ghyselen B, Salvetat T, Tauzin A, Signamarcheix T, Dobrich A, Hannappel T, Schwarzburg K 2014 Prog. Photovolt: Res. Appl. 22 277

    [12]

    Schimper H J, Kollonitsch Z, Moller K, Seidel U, Bloeck U, Schwarzburg K, Willing F, Hannappel T 2006 J. Cryst. Growth 287 642

    [13]

    Dharmarasu N, Yamaguchi M, Khan A, Yamada T, Tanabe T, Takagishi S, Takamoto T, Ohshima T, Itoh H, Imaizumi M, Matsuda S 2010 Appl. Phys. Lett. 79 2399

    [14]

    Luo S, Ji H M, Gao F, Yang X G, Liang P, Zhao L J, Yang T 2013 Chin. Phys. Lett. 30 068101

    [15]

    Baillargeon J N, Cho A Y, Thiel F A, Fischer R J, Pearah P J, Cheng K Y 1994 Appl. Phys. Lett. 65 207

    [16]

    Baillargeon J N, Cho A Y, Cheng K Y 1996 J. Appl. Phys. 79 7652

    [17]

    Ji L, Lu S L, Wu Y Y, Dai P, Bian L F, Arimochi M, Watanabe T, Asaka N, Uemura M, Tackeuchi A, Uchida S, Yang H 2014 Sol. Energy Mater. Sol. Cells 27 1

    [18]

    Yin M, Nash G R, Coomber S D, Buckle L, Carrington Krier J P A, Aandreev A, Przeslak J S B, Valicourt G, Smith S J, Emeny M T, Ashley T 2008 Appl. Phys. Lett. 93 121106

    [19]

    Fouquet J E, Siegman A E 1985 Appl. Phys. Lett. 46 280

    [20]

    Varshni Y P 1967 Physica 34 149

    [21]

    Satzke K, Weiser G, Hoger R, Thulke W 1988 J. Appl. Phys. 63 5485

    [22]

    Li C F, Lin D Y, Huang Y S, Chen Y F, Tiong K K 1997 J. Appl. Phys. 81 400

    [23]

    Schwedler R, Reinhardt F, Grützmacher D, Wolter K 1991 J. Cryst. Growth 107 531

    [24]

    Maksimov O, Guo S P, Muňoz M, Tamargo M C 2001 J. Appl. Phys. 90 5135

  • [1]

    Friedman D J, Kurtz S R, Bertness K A, Kibbler A E, Kramer C, Olson J M, King D L, Hansen B R, Snyder J K 1995 Prog Photovolt. 3 47

    [2]

    Yamaguchi M 2003 Sol. Energy Mater. Sol. Cells 75 261

    [3]

    Dimroth F, Beckert R, Meusel M, Schubert U, Bett A W 2001 Prog. Photovolt. 9 165

    [4]

    Wang J Z, Huang Q L, Xu X, Quan B G, Luo J H, Zhang Y, Ye J S, Li D M, Meng Q B, Yang G Z 2015 Chin. Phys. B 24 054201

    [5]

    Yang J, Zhao D G, Jiang D S, Liu Z S, Chen P, Li L, Wu L L, Le L C, Li X J, He Xiao-G, Wang H, Zhu J J, Zhang S M, Zhang B S, Yang H 2014 Chin. Phys. B 23 068801

    [6]

    Wang H X, Zheng X H, Wu Y Y, Gan X Y, Wang N M, Yang H 2013 Acta Phys. Sin. 62 218801 (in Chinese) [王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉 2013 62 218801]

    [7]

    Green M A, Emery K, Hishikawa Y, Warta W 2013 Prog. Photovolt: Res. Appl. 21 827

    [8]

    Marti A, Araujo G L 1996 Sol. Energy Mater. Sol. Cells 43 203

    [9]

    Shockley W, Queisser H 1961 J. Appl. Phys. 32 510

    [10]

    Law D C, King R R, Yoon H, Archer M J, Boca A, Fetzer C M, Mesropian S, Isshiki T, Haddad M, Edmondson K M, Bhusari D, Yena J, Sherif R A, Atwater H A, Karama N H 2010 Sol. Energy Mater. Sol. Cells 94 1314

    [11]

    Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, Tibbits N T D, Oliva E, Siefer G, Schachtner M, Wekkeli A, Bett A W, Krause R, Piccin M, Blanc N, Drazek C, Guiot E, Ghyselen B, Salvetat T, Tauzin A, Signamarcheix T, Dobrich A, Hannappel T, Schwarzburg K 2014 Prog. Photovolt: Res. Appl. 22 277

    [12]

    Schimper H J, Kollonitsch Z, Moller K, Seidel U, Bloeck U, Schwarzburg K, Willing F, Hannappel T 2006 J. Cryst. Growth 287 642

    [13]

    Dharmarasu N, Yamaguchi M, Khan A, Yamada T, Tanabe T, Takagishi S, Takamoto T, Ohshima T, Itoh H, Imaizumi M, Matsuda S 2010 Appl. Phys. Lett. 79 2399

    [14]

    Luo S, Ji H M, Gao F, Yang X G, Liang P, Zhao L J, Yang T 2013 Chin. Phys. Lett. 30 068101

    [15]

    Baillargeon J N, Cho A Y, Thiel F A, Fischer R J, Pearah P J, Cheng K Y 1994 Appl. Phys. Lett. 65 207

    [16]

    Baillargeon J N, Cho A Y, Cheng K Y 1996 J. Appl. Phys. 79 7652

    [17]

    Ji L, Lu S L, Wu Y Y, Dai P, Bian L F, Arimochi M, Watanabe T, Asaka N, Uemura M, Tackeuchi A, Uchida S, Yang H 2014 Sol. Energy Mater. Sol. Cells 27 1

    [18]

    Yin M, Nash G R, Coomber S D, Buckle L, Carrington Krier J P A, Aandreev A, Przeslak J S B, Valicourt G, Smith S J, Emeny M T, Ashley T 2008 Appl. Phys. Lett. 93 121106

    [19]

    Fouquet J E, Siegman A E 1985 Appl. Phys. Lett. 46 280

    [20]

    Varshni Y P 1967 Physica 34 149

    [21]

    Satzke K, Weiser G, Hoger R, Thulke W 1988 J. Appl. Phys. 63 5485

    [22]

    Li C F, Lin D Y, Huang Y S, Chen Y F, Tiong K K 1997 J. Appl. Phys. 81 400

    [23]

    Schwedler R, Reinhardt F, Grützmacher D, Wolter K 1991 J. Cryst. Growth 107 531

    [24]

    Maksimov O, Guo S P, Muňoz M, Tamargo M C 2001 J. Appl. Phys. 90 5135

  • [1] Liang Ai-Hua, Wang Xu-Sheng, Li Guo-Rong, Zheng Liao-Ying, Jiang Xiang-Ping, Hu Rui. Properties of Photoluminescence and mechanoluminescence of KxNa1–xNbO3:Pr3+ ferroelectric. Acta Physica Sinica, 2022, 71(16): 167801. doi: 10.7498/aps.71.20220501
    [2] Ma Teng-Yu, Li Wan-Jun, He Xian-Wang, Hu Hui, Huang Li-Juan, Zhang Hong, Xiong Yuan-Qiang, Li Hong-Lin, Ye Li-Juan, Kong Chun-Yang. Size Regulation and Photoluminescence Properties of β-Ga2O3 Nanomaterials. Acta Physica Sinica, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [3] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [4] Zhou Xiao-Hong, Yang Qing, Zou Jun-Tao, Liang Shu-Hua. Effects of growth conditions on the microstructures and photoluminescence properties of Ga-doped ZnO films. Acta Physica Sinica, 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [5] Wang Chang-Yuan, Yang Xiao-Hong, Ma Yong, Feng Yuan-Yuan, Xiong Jin-Long, Wang Wei. Microstructure and photoluminescence of ZnO:Cd nanorods synthesized by hydrothermal method. Acta Physica Sinica, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [6] Wang Jian, Xie Zi-Li, Zhang Rong, Zhang Yun, Liu Bin, Chen Peng, Han Ping. Study on the photoluminescence properties of InN films. Acta Physica Sinica, 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [7] Cheng Sai, Lü Hui-Min, Shi Zhen-Hai, Cui Jing-Ya. Growth and photoluminescence character research of aluminum nitride nanowires upon carbon foam substrate. Acta Physica Sinica, 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [8] Wu Yan-Nan, Xu Ming, Wu Ding-Cai, Dong Cheng-Jun, Zhang Pei-Pei, Ji Hong-Xuan, He Lin. Effects of Co and/or Sn doping on crystal structures and optical properties of ZnO thin films. Acta Physica Sinica, 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [9] Fang He, Wang Shun-Li, Li Li-Qun, Li Pei-Gang, Liu Ai-Ping, Tang Wei-Hua. Synthesis and photoluminescence of ZnO and Zn/ZnOnanoparticles prepared by liquid-phase pulsed laser ablation. Acta Physica Sinica, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [10] Gao Li, Zhang Jian-Min. Photoluminescence of diluted Mg doped ZnO thin films and band-gap change mechanisms. Acta Physica Sinica, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [11] Zheng Li-Ren, Huang Bai-Biao, Wei Ji-Yong. Preparation of SiOx nanowires in different atmosphere, their morphology, PL and FTIR properties. Acta Physica Sinica, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [12] Wu Ding-Cai, Hu Zhi-Gang, Duan Man-Yi, Xu Lu-Xiang, Liu Fang-Shu, Dong Cheng-Jun, Wu Yan-Nan, Ji Hong-Xuan, Xu Ming. Synthesis and photoluminescence of (Co, Cu)-doped ZnO thin films. Acta Physica Sinica, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [13] Li Su-Mei, Song Shu-Mei, Lü Ying-Bo, Wang Ai-Fang, Wu Ai-Ling, Zheng Wei-Min. Photoluminescence study of quantum confined acceptors. Acta Physica Sinica, 2009, 58(7): 4936-4940. doi: 10.7498/aps.58.4936
    [14] Miao Jing-Wei, Wang Pei-Lu, Zhu Zhou-Sen, Yuan Xue-Dong, Wang Hu, Yang Chao-Wen, Shi Mian-Gong, Miao Lei, Sun Wei-Li, Zhang Jing, Liao Xue-Hua. Photoluminescence spectrum of monocrystalline Si implanted by nitrogen cluster ions. Acta Physica Sinica, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [15] Yu Wei, Li Ya-Chao, Ding Wen-Ge, Zhang Jiang-Yong, Yang Yan-Bin, Fu Guang-Sheng. Bonding configurations and photoluminescence of amorphous Si nanoparticles in SiNx films. Acta Physica Sinica, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [16] Tang Bin, Deng Hong, Shui Zheng-Wei, Wei Min, Chen Jin-Ju, Hao Xin. Room-temperature optical properties of Al-doped ZnO nanowires array. Acta Physica Sinica, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [17] Wang Ying-Long, Lu Li-Fang, Yan Chang-Yu, Chu Li-Zhi, Zhou Yang, Fu Guang-Sheng, Peng Ying-Cai. The laser ablated deposition of Si nanocrystalline film with narrow photoluminescence peak. Acta Physica Sinica, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [18] Xu Xiao-Hua, Niu Zhi-Chuan, Ni Hai-Qiao, Xu Ying-Qiang, Zhang Wei, He Zheng-Hong, Han Qin, Wu Rong-Han, Jiang De-Sheng. Photoluminescence study of (GaAs1-xSbx/InyGa1-yAs)/GaAs bilayer quantum well grown by molecular beam epitaxy. Acta Physica Sinica, 2005, 54(6): 2950-2954. doi: 10.7498/aps.54.2950
    [19] Huang Kai, Wang Si-Hui, Shi Yi, Qin Guo-Yi, Zhang Rong, Zheng You-Dou. Effect of inner electric field on the photoluminescence spectrum of nanosilicon. Acta Physica Sinica, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [20] Zhang Xi-Tian, Xiao Zhi-Yan, Zhang Wei-Li, Gao Hong, Wang Yu-Xi, Liu Yi-Chun, Zhang Ji-Ying, Xu Wu. A study on photoluminescence characterization of high-quality nanocrystalline ZnO thin films. Acta Physica Sinica, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
Metrics
  • Abstract views:  6037
  • PDF Downloads:  150
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2015
  • Accepted Date:  05 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map