-
In this paper, an efficient method of suppressing interference is presented in an optical feedback-cavity enhanced absorption spectroscopy (OF-CEAS) system. The Ariy function is used to analyze the interference signal in the transmission cavity mode signal. It is found that the interference signal in system originates from multiple reflections of the beam in the mirror, which is verified by replacing three kinds of cavity front mirrors with different thickness values. The result obtained by the Ariy function is used as a background signal, and the absorption spectrum signal can be obtained by making its difference from the absorption signal of the measured gas. This method effectively avoids the frequency error caused by the inability to measure the background signal and the absorption signal at the same time in the OF-CEAS system. Finally, the absorption characteristics of acetylene gas at 1.53 μm are measured. Based on the signal-to-noise ratio, the detection sensitivity of the system is evaluated to be 7.143 × 10–8 (1σ). Experiments show that this method is effective in improving the detection sensitivity of OF-CEAS system.
-
Keywords:
- optical feedback cavity enhanced absorption spectroscopy /
- interference effect /
- Ariy function
[1] Toda K, Obata T, Obolkin V A, Potemkin V L, Hirota K, Takeuchi M, Arita S, Khodzher T V, Grachev M A 2010 Atmos. Environ. 44 2427
Google Scholar
[2] Heinrich K, Fritsch T, Hering P, Mürtz M 2009 Appl. Phys. B 95 281
Google Scholar
[3] Guo X, Zheng F, Li C, Yang X, Li N, Liu S, Wei J, Qiu X, He Q 2019 Opt. Lasers Eng. 115 243
Google Scholar
[4] 阚瑞峰, 刘文清, 张玉钧, 刘建国 2005 54 1927
Google Scholar
Kan R F, Liu W Q, Zhang Y J, et al. 2005 Acta Phys. Sin. 54 1927
Google Scholar
[5] Menzel L, Kosterev A, Curl R, Tittle F, Gmachl C, Capasso F, Sivco D, Baillargeon J, Hutchinson A, Cho A, Urban W 2001 Appl. Phys. B 72 859
Google Scholar
[6] Han L, Xia H, Pang T, Zhang Z, Wu B, Liu S, Sun P, Cui X, Wang Y, Sigrist M, Dong F 2018 Infrared Phys. Technol. 91 37
Google Scholar
[7] Feng S, Qiu X, Guo G, Zhang E, He Q, He X, Ma W, Fittschen C, Li C 2021 Anal. Chem. 93 4552
Google Scholar
[8] Chang H, Feng S, Qiu X, Meng H, Guo G, He X, He Q, Yang X, Ma W, Kan R, Fittschen C, Li C 2021 Opt. Lett. 45 5897
Google Scholar
[9] Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C, Crosson E, Van Pelt A, Steinbach J, Kolle O, Beck V 2010 Atmos. Meas. Tech. 3 375
Google Scholar
[10] Kassi S, Chenevier M, Gianfrani L, Salhi A, Rouillard Y, Ouvrard A, Romanini D 2006 Opt. Express 14 11442
Google Scholar
[11] Morville J, Kassi S, Chenevier M, Romanini D 2005 Appl. Phys. B 80 1027
Google Scholar
[12] Gagliardi G, Loock H P 2014 Cavity-Enhanced Spectroscopy and Sensing (Berlin: Springer) p163
[13] Baran S G, Hancock G, Peverall R, Ritchie G A, van Leeuwen N J 2009 Analyst 134 243
Google Scholar
[14] Chen W, Wan F, Zou J, Gu C, Zhou Q 2015 Chin. Phys. B 24 024206
Google Scholar
[15] Bergin A, Hancock G, Ritchie G, Weidmann D 2013 Opt. Lett. 38 2475
Google Scholar
[16] Manfred K M, Ciaffoni L, Ritchie G A 2015 Appl. Phys. B 120 329
Google Scholar
[17] 许非, 周晓彬, 刘政波, 赵刚, 马维光 2021 光学精密工程 29 933
Google Scholar
Xu F, Zhou X B, Liu Z B, Zhao G, Ma W G 2021 Optics Prec. Engin. 29 933
Google Scholar
[18] Tian J, Zhao G, Fleisher A, Ma W, Jia S 2021 Opt. Express 29 26831
[19] Werle P 2011 Appl. Phys. B 102 313
Google Scholar
[20] Bomse D S, Stanton A C, Silver J A 1992 Appl. Opt. 31 718
[21] Hartmann A, Strzoda R, Schrobenhauser R 2014 Appl. Phys. B 115 263
[22] Xiong B, Du Z, Li J 2015 Rev. Sci. Instrum. 86 113104
[23] Li C, Shao L, Meng H, Wei J, Qiu X, He Q, Chen Y 2018 Opt. Express 26 29330
[24] Ehlers P, Johansson A C, Silander I, Foltynowicz A, Axner O 2014 J. Opt. Soc. Am. B 31 2938
Google Scholar
[25] Morville J, Romanini D 2002 Appl. Phys. B 74 495
Google Scholar
[26] Habig J, Nadolny J, Meinen J, Saathoff H, Leisner T 2012 Appl. Phys. B 106 491
Google Scholar
[27] Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K 2017 J. Quant. Spectrosc. Radiat. Transf. 203 3
Google Scholar
[28] Li C, Guo X, Ji W, Wei J, Qiu X, Ma W 2018 Opt. Quantum Electron. 50 1
Google Scholar
[29] Li J, Gao X, Li W, Cao Z, Deng L, Zhao W, Huang M, Zhang W 2006 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 64 338
Google Scholar
-
-
[1] Toda K, Obata T, Obolkin V A, Potemkin V L, Hirota K, Takeuchi M, Arita S, Khodzher T V, Grachev M A 2010 Atmos. Environ. 44 2427
Google Scholar
[2] Heinrich K, Fritsch T, Hering P, Mürtz M 2009 Appl. Phys. B 95 281
Google Scholar
[3] Guo X, Zheng F, Li C, Yang X, Li N, Liu S, Wei J, Qiu X, He Q 2019 Opt. Lasers Eng. 115 243
Google Scholar
[4] 阚瑞峰, 刘文清, 张玉钧, 刘建国 2005 54 1927
Google Scholar
Kan R F, Liu W Q, Zhang Y J, et al. 2005 Acta Phys. Sin. 54 1927
Google Scholar
[5] Menzel L, Kosterev A, Curl R, Tittle F, Gmachl C, Capasso F, Sivco D, Baillargeon J, Hutchinson A, Cho A, Urban W 2001 Appl. Phys. B 72 859
Google Scholar
[6] Han L, Xia H, Pang T, Zhang Z, Wu B, Liu S, Sun P, Cui X, Wang Y, Sigrist M, Dong F 2018 Infrared Phys. Technol. 91 37
Google Scholar
[7] Feng S, Qiu X, Guo G, Zhang E, He Q, He X, Ma W, Fittschen C, Li C 2021 Anal. Chem. 93 4552
Google Scholar
[8] Chang H, Feng S, Qiu X, Meng H, Guo G, He X, He Q, Yang X, Ma W, Kan R, Fittschen C, Li C 2021 Opt. Lett. 45 5897
Google Scholar
[9] Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C, Crosson E, Van Pelt A, Steinbach J, Kolle O, Beck V 2010 Atmos. Meas. Tech. 3 375
Google Scholar
[10] Kassi S, Chenevier M, Gianfrani L, Salhi A, Rouillard Y, Ouvrard A, Romanini D 2006 Opt. Express 14 11442
Google Scholar
[11] Morville J, Kassi S, Chenevier M, Romanini D 2005 Appl. Phys. B 80 1027
Google Scholar
[12] Gagliardi G, Loock H P 2014 Cavity-Enhanced Spectroscopy and Sensing (Berlin: Springer) p163
[13] Baran S G, Hancock G, Peverall R, Ritchie G A, van Leeuwen N J 2009 Analyst 134 243
Google Scholar
[14] Chen W, Wan F, Zou J, Gu C, Zhou Q 2015 Chin. Phys. B 24 024206
Google Scholar
[15] Bergin A, Hancock G, Ritchie G, Weidmann D 2013 Opt. Lett. 38 2475
Google Scholar
[16] Manfred K M, Ciaffoni L, Ritchie G A 2015 Appl. Phys. B 120 329
Google Scholar
[17] 许非, 周晓彬, 刘政波, 赵刚, 马维光 2021 光学精密工程 29 933
Google Scholar
Xu F, Zhou X B, Liu Z B, Zhao G, Ma W G 2021 Optics Prec. Engin. 29 933
Google Scholar
[18] Tian J, Zhao G, Fleisher A, Ma W, Jia S 2021 Opt. Express 29 26831
[19] Werle P 2011 Appl. Phys. B 102 313
Google Scholar
[20] Bomse D S, Stanton A C, Silver J A 1992 Appl. Opt. 31 718
[21] Hartmann A, Strzoda R, Schrobenhauser R 2014 Appl. Phys. B 115 263
[22] Xiong B, Du Z, Li J 2015 Rev. Sci. Instrum. 86 113104
[23] Li C, Shao L, Meng H, Wei J, Qiu X, He Q, Chen Y 2018 Opt. Express 26 29330
[24] Ehlers P, Johansson A C, Silander I, Foltynowicz A, Axner O 2014 J. Opt. Soc. Am. B 31 2938
Google Scholar
[25] Morville J, Romanini D 2002 Appl. Phys. B 74 495
Google Scholar
[26] Habig J, Nadolny J, Meinen J, Saathoff H, Leisner T 2012 Appl. Phys. B 106 491
Google Scholar
[27] Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K 2017 J. Quant. Spectrosc. Radiat. Transf. 203 3
Google Scholar
[28] Li C, Guo X, Ji W, Wei J, Qiu X, Ma W 2018 Opt. Quantum Electron. 50 1
Google Scholar
[29] Li J, Gao X, Li W, Cao Z, Deng L, Zhao W, Huang M, Zhang W 2006 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 64 338
Google Scholar
Catalog
Metrics
- Abstract views: 5050
- PDF Downloads: 97
- Cited By: 0