Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric HONO

Duan Jun Qin Min Fang Wu Ling Liu-Yi Hu Ren-Zhi Lu Xue Shen Lan-Lan Wang Dan Xie Pin-Hua Liu Jian-Guo Liu Wen-Qing

Citation:

Incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric HONO

Duan Jun, Qin Min, Fang Wu, Ling Liu-Yi, Hu Ren-Zhi, Lu Xue, Shen Lan-Lan, Wang Dan, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We report the development of an incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) based on an ultraviolet light emitting diode (UV-LED), and the IBBCEAS instrument is used for simultaneously measuring of the atmospheric HONO and NO2. The cavity-enhanced method is characterized by high sensitivity and spatial resolution. The incoherent broadband light is focused into a high-finesse optical cavity, two highly reflecting mirrors form the ends of the cavity, and the light is then trapped between the two highly reflecting mirrors, resulting in long photon residence time and long optical path length. The effects of the Rayleigh scattering of the gases in the cavity and stability of the UV-LED light source were discussed in this paper. The reflectivity of the highly reflecting mirror was calibrated by the difference of Rayleigh scattering of He and N2, and the optimum averaging time of the IBBCEAS instrument was confirmed to be 320 s by the Allan variance analysis. Detection limits (1) of 0.22 ppb for HONO and 0.45 ppb for NO2 were achieved with an optimum acquisition time of 320 s. In order to test the accuracy of measured results by the IBBCEAS instrument, concentrations of HONO and NO2 were recorded during about continuous three days by the IBBCEAS instrument and compared with the results obtained by a different optical absorption spectroscopy (DOAS) instrument. The results of HONO show a linear correction factor (R2) of 0.917, in a slope of 0.897 with an offset of 0.13 ppb; NO2 concentration measured by the IBBCEAS instrument accords well with the result obtained by the DOAS instrument, with a linear correlation of R2 = 0.937, in a slope of 0.914 with an offset of-0.17 ppb.
      Corresponding author: Qin Min, mqin@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275151, 41305139), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB05040200, XDB05010500), the National High Technology Research and Development Program of China (Grant No. 2014AA06A508) and the Natural Science Foundation of Anhui Province, China (Grant No. 1408085QD75).
    [1]

    Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner F X, Andreae M O, Cheng P, Zhang Y, Poschl U 2011 Science 333 1616

    [2]

    Kulmala M, Petaja T 2011 Science 333 1586

    [3]

    Oswald R, Behrendt T, Ermel M, Wu D, Su H, Cheng Y, Breuninger C, Moravek A, Mougin E, Delon C, Loubet B, Pommerening-Roeser A, Soergel M, Poeschl U, Hoffmann T, Andreae M O, Meixner F X, Trebs I 2013 Science 341 1233

    [4]

    Crabtree K N, Talipov M R, Martinez Jr O, O’Connor G D, Khursan S L, McCarthy M C 2013 Science 342 1354

    [5]

    Li X, Rohrer F, Hofzumahaus A, Brauers T, Haeseler R, Bohn B, Broch S, Fuchs H, Gomm S, Holland F, Jaeger J, Kaiser J, Keutsch F N, Lohse I, Lu K, Tillmann R, Wegener R, Wolfe G M, Mentel T F, Kiendler-Scharr A, Wahner A 2014 Science 344 292

    [6]

    Fiedler S E, Hese A, Ruth A A 2003 Chem. Phys. Lett. 371 284

    [7]

    Ling L Y, Xie P H, Qin M, Fang W, Jiang Y, Hu R Z, Zheng N N 2013 Chin. Opt. Lett. 11 063001

    [8]

    Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68

    [9]

    Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916

    [10]

    Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Measur. Tech. 4 1759

    [11]

    Dorn H P, Apodaca R L, Ball S M, Brauers T, Brown S S, Crowley J N, Dubé W P, Fuchs H, Häseler R, Heitmann U, Jones R L, Kiendler-Scharr A, Labazan I, Langridge J M, Meinen J, Mentel T F, Platt U, Pöhler D, Rohrer F, Ruth A A, Schlosser E, Schuster G, Shillings A J L, Simpson W R, Thieser J, Tillmann R, Varma R, Venables D S, Wahner A 2013 Atmos. Measur. Tech. 6 1111

    [12]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758

    [13]

    Wu T, Coeur-Tourneur C, Dhont G, Cassez A, Fertein E, He X, Chen W 2014 J. Quantit. Spectrosc. Radiat. Trans. 133 199

    [14]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471

    [15]

    Wu T, Chen W, Fertein E, Cazier F, Dewaele D, Gao X 2011 Appl. Phys. B 106 501

    [16]

    Wu T, Zha Q, Chen W, Xu Z, Wang T, He X 2014 Atmos. Environ. 95 544

    [17]

    Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2007 Environ. Sci. Technol. 42 890

    [18]

    Thalman R, Volkamer R 2010 Atmos. Measur. Tech. 3 1797

    [19]

    Hoch D J, Buxmann J, Sihler H, Pöhler D, Zetzsch C, Platt U 2014 Atmos. Measur. Tech. 7 199

    [20]

    Ling L Y, Qin M, Xie P H, Hu R Z, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sin. 61 140703(in Chinese) [凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 61 140703]

    [21]

    Ling L Y, Xie P H, Qin M, Hu R Z, Zheng N N 2013 J. Atmos. Environ. Opt. 1 10(in Chinese) [凌六一, 谢品华, 秦敏, 胡仁志, 郑尼娜 2013 大气与环境光学学报 1 10]

    [22]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779

    [23]

    Axson J L, Washenfelder R A, Kahan T F, Young C J, Vaida V, Brown S S 2011 Atmos. Chem. Phys. 11 11581

    [24]

    Stutz J, Kim E, Platt U, Bruno P, Perrino C, Febo A 2000 J. Geophys. Res. 105 14585

    [25]

    Qin M, Xie P H, Liu W Q, Li A, Dou K, Fang W, Liu J G, Zhang W J 2006 J. Environ. Sci. 18 69

    [26]

    Qin M, Xie P H, Su H, Gu J, Peng F M, Li S W, Zeng L M, Liu J G, Liu W Q, Zhang Y H 2009 Atmos. Environ. 43 5731

    [27]

    Li X, Brauers T, Häseler R, Bohn B, Fuchs H, Hofzumahaus A, Holland F, Lou S, Lu K D, Rohrer F, Hu M, Zeng L M, Zhang Y H, Garland R M, Su H, Nowak A, Wiedensohler A, Takegawa N, Shao M, Wahner A 2012 Atmos. Chem. Phys. 12 1497

  • [1]

    Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner F X, Andreae M O, Cheng P, Zhang Y, Poschl U 2011 Science 333 1616

    [2]

    Kulmala M, Petaja T 2011 Science 333 1586

    [3]

    Oswald R, Behrendt T, Ermel M, Wu D, Su H, Cheng Y, Breuninger C, Moravek A, Mougin E, Delon C, Loubet B, Pommerening-Roeser A, Soergel M, Poeschl U, Hoffmann T, Andreae M O, Meixner F X, Trebs I 2013 Science 341 1233

    [4]

    Crabtree K N, Talipov M R, Martinez Jr O, O’Connor G D, Khursan S L, McCarthy M C 2013 Science 342 1354

    [5]

    Li X, Rohrer F, Hofzumahaus A, Brauers T, Haeseler R, Bohn B, Broch S, Fuchs H, Gomm S, Holland F, Jaeger J, Kaiser J, Keutsch F N, Lohse I, Lu K, Tillmann R, Wegener R, Wolfe G M, Mentel T F, Kiendler-Scharr A, Wahner A 2014 Science 344 292

    [6]

    Fiedler S E, Hese A, Ruth A A 2003 Chem. Phys. Lett. 371 284

    [7]

    Ling L Y, Xie P H, Qin M, Fang W, Jiang Y, Hu R Z, Zheng N N 2013 Chin. Opt. Lett. 11 063001

    [8]

    Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68

    [9]

    Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916

    [10]

    Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Measur. Tech. 4 1759

    [11]

    Dorn H P, Apodaca R L, Ball S M, Brauers T, Brown S S, Crowley J N, Dubé W P, Fuchs H, Häseler R, Heitmann U, Jones R L, Kiendler-Scharr A, Labazan I, Langridge J M, Meinen J, Mentel T F, Platt U, Pöhler D, Rohrer F, Ruth A A, Schlosser E, Schuster G, Shillings A J L, Simpson W R, Thieser J, Tillmann R, Varma R, Venables D S, Wahner A 2013 Atmos. Measur. Tech. 6 1111

    [12]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758

    [13]

    Wu T, Coeur-Tourneur C, Dhont G, Cassez A, Fertein E, He X, Chen W 2014 J. Quantit. Spectrosc. Radiat. Trans. 133 199

    [14]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471

    [15]

    Wu T, Chen W, Fertein E, Cazier F, Dewaele D, Gao X 2011 Appl. Phys. B 106 501

    [16]

    Wu T, Zha Q, Chen W, Xu Z, Wang T, He X 2014 Atmos. Environ. 95 544

    [17]

    Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2007 Environ. Sci. Technol. 42 890

    [18]

    Thalman R, Volkamer R 2010 Atmos. Measur. Tech. 3 1797

    [19]

    Hoch D J, Buxmann J, Sihler H, Pöhler D, Zetzsch C, Platt U 2014 Atmos. Measur. Tech. 7 199

    [20]

    Ling L Y, Qin M, Xie P H, Hu R Z, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sin. 61 140703(in Chinese) [凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 61 140703]

    [21]

    Ling L Y, Xie P H, Qin M, Hu R Z, Zheng N N 2013 J. Atmos. Environ. Opt. 1 10(in Chinese) [凌六一, 谢品华, 秦敏, 胡仁志, 郑尼娜 2013 大气与环境光学学报 1 10]

    [22]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779

    [23]

    Axson J L, Washenfelder R A, Kahan T F, Young C J, Vaida V, Brown S S 2011 Atmos. Chem. Phys. 11 11581

    [24]

    Stutz J, Kim E, Platt U, Bruno P, Perrino C, Febo A 2000 J. Geophys. Res. 105 14585

    [25]

    Qin M, Xie P H, Liu W Q, Li A, Dou K, Fang W, Liu J G, Zhang W J 2006 J. Environ. Sci. 18 69

    [26]

    Qin M, Xie P H, Su H, Gu J, Peng F M, Li S W, Zeng L M, Liu J G, Liu W Q, Zhang Y H 2009 Atmos. Environ. 43 5731

    [27]

    Li X, Brauers T, Häseler R, Bohn B, Fuchs H, Hofzumahaus A, Holland F, Lou S, Lu K D, Rohrer F, Hu M, Zeng L M, Zhang Y H, Garland R M, Su H, Nowak A, Wiedensohler A, Takegawa N, Shao M, Wahner A 2012 Atmos. Chem. Phys. 12 1497

  • [1] Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao. Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping. Acta Physica Sinica, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] Zhao Shu-Yu, Xu Bin-Bin, Zhao Zhen-Yu, Lü Xue-Qin. Influence of top mirror on performance of GaN-based resonant cavity light-emitting diode. Acta Physica Sinica, 2022, 71(4): 047801. doi: 10.7498/aps.71.20211720
    [3] Jiang Fu-Chun, Liu Rui-You, Peng Dong-Sheng, Liu Wen, Chai Guang-Yue, Li Bai-Kui, Wu Hong-Lei. Steady-state thermal resistance measurement of light-emitting diodes based on spectroscopic method. Acta Physica Sinica, 2021, 70(9): 098501. doi: 10.7498/aps.70.20201093
    [4] Study on the effect of top mirror on the performance of GaN-based resonant cavity light-emitting diode. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211720
    [5] Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long. Research progress of enhancing perovskite light emitting diodes with light extraction. Acta Physica Sinica, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [6] Li Chuang, Cai Li, Li Wei-Wei, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Li Cheng, Wei Bo. Adsorption of NO2 by hydrazine hydrate-reduced graphene oxide. Acta Physica Sinica, 2019, 68(11): 118102. doi: 10.7498/aps.68.20182242
    [7] Cao Yuan, Tian Xing, Cheng Gang, Liu Kun, Wang Gui-Shi, Zhu Gong-Dong, Gao Xiao-Ming. NO2 measurement using fiber coupled broadband LED source combining a Herriott multi-pass cell. Acta Physica Sinica, 2019, 68(16): 164201. doi: 10.7498/aps.68.20190243
    [8] Liu Meng-Jiao, Zhang Xin-Wen, Wang Jiong, Qin Ya-Bo, Chen Yue-Hua, Huang Wei. Research progress of light out-coupling in organic light-emitting diodes with non-period micro/nanostructures. Acta Physica Sinica, 2018, 67(20): 207801. doi: 10.7498/aps.67.20181209
    [9] Zhu Bing, Feng Hao. Electron scattering studies of NO2 radical using R-matrix method. Acta Physica Sinica, 2017, 66(24): 243401. doi: 10.7498/aps.66.243401
    [10] Chen Zhan-Xu, Wan Wei, He Ying-Ji, Chen Geng-Yan, Chen Yong-Zhu. Light-extraction enhancement of GaN-based LEDs by closely-packed nanospheres monolayer. Acta Physica Sinica, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [11] Gong Zhi-Na, Yun Feng, Ding Wen, Zhang Ye, Guo Mao-Feng, Liu Shuo, Huang Ya-Ping, Liu Hao, Wang Shuai, Feng Lun-Gang, Wang Jiang-Teng. Increase in light extraction efficiency of vertical light emitting diodes by a photo-electro-chemical etching method. Acta Physica Sinica, 2015, 64(1): 018501. doi: 10.7498/aps.64.018501
    [12] Chen Xin-Lian, Kong Fan-Min, Li Kang, Gao Hui, Yue Qing-Yang. Improvement of light extraction efficiency of GaN-based blue light-emitting diode by disorder photonic crystal. Acta Physica Sinica, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [13] Hu Ming, Liu Qing-Lin, Jia Ding-Li, Li Ming-Da. Gas-sensing properties at room temperature for the sensors based on tungsten oxide thin films sputtered on n-type ordered porous silicon. Acta Physica Sinica, 2013, 62(5): 057102. doi: 10.7498/aps.62.057102
    [14] Jiao Wei, Lei Yan-Lian, Zhang Qiao-Ming, Liu Ya-Li, Chen Lin, You Yin-Tao, Xiong Zu-Hong. Light-induced magnetoconductance effect in organic light-emitting diodes. Acta Physica Sinica, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [15] Yang Yang, Chen Shu-Fen, Xie Jun, Chen Chun-Yan, Shao Ming, Guo Xu, Huang Wei. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [16] Zhang Yun-Yan, Fan Guang-Han, Zhang Yong, Zheng Shu-Wen. Effect of spectrum-control in dual-wavelength light-emitting diode by doped GaN interval layer. Acta Physica Sinica, 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
    [17] Li Jian-Jun, Yang Zhen, Han Jun, Deng Jun, Zou De-Shu, Kang Yu-Zhu, Ding Liang, Shen Guang-Di. High performance resonant cavity light emitting diodes for POF application. Acta Physica Sinica, 2009, 58(9): 6304-6307. doi: 10.7498/aps.58.6304
    [18] Li Su-Wen, Xie Pin-Hua, Liu Wen-Qing, Si Fu-Qi, Li Ang, Peng Fu-Min. A study of applicability of light emitting diodes in differential optical absorption spectroscopy measurements. Acta Physica Sinica, 2008, 57(3): 1963-1967. doi: 10.7498/aps.57.1963
    [19] Gu Xiao-Ling, Guo Xia, Liang Ting, Lin Qiao-Ming, Guo Jing, Wu Di, Xu Li-Hua, Shen Guang-Di. The electroluminescence spectra of dual wavelength GaN-based light emitting diodes. Acta Physica Sinica, 2007, 56(9): 5531-5535. doi: 10.7498/aps.56.5531
    [20] Sun Hui, Zhang Qi-Feng, Wu Jin-Lei. Ultraviolet light emitting diode based on ZnO nanowires. Acta Physica Sinica, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
Metrics
  • Abstract views:  6233
  • PDF Downloads:  281
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2015
  • Accepted Date:  15 June 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map