搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非相干宽带腔增强吸收光谱技术应用于实际大气亚硝酸的测量

段俊 秦敏 方武 凌六一 胡仁志 卢雪 沈兰兰 王丹 谢品华 刘建国 刘文清

引用本文:
Citation:

非相干宽带腔增强吸收光谱技术应用于实际大气亚硝酸的测量

段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清

Incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric HONO

Duan Jun, Qin Min, Fang Wu, Ling Liu-Yi, Hu Ren-Zhi, Lu Xue, Shen Lan-Lan, Wang Dan, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing
PDF
导出引用
  • 介绍了基于紫外发光二极管光源的非相干宽带腔增强吸收光谱技术, 并用于实际大气亚硝酸(HONO)和二氧化氮(NO2)的同时测量. 分析了腔内气体的瑞利散射对测量的影响, 测试了紫外发光二极管光源的稳定性, 使用氦气和氮气的瑞利散射差异性标定了镜片反射率随波长的变化曲线, 在HONO吸收峰(368.2 nm)处镜片反射率约为0.99965. 应用Allan方差统计方法确定出测量光谱最佳采集时间为320 s, 对应的HONO和NO2的探测限(1)分别为0.22 ppb 和0.45 ppb. 使用非相干宽带腔增强吸收光谱测量装置对大气HONO和NO2进行了连续三日的实际观测, 将测量得到的HONO浓度变化与差分吸收光谱测量装置的测量结果进行对比, 线性相关系数R2为0.917.
    We report the development of an incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) based on an ultraviolet light emitting diode (UV-LED), and the IBBCEAS instrument is used for simultaneously measuring of the atmospheric HONO and NO2. The cavity-enhanced method is characterized by high sensitivity and spatial resolution. The incoherent broadband light is focused into a high-finesse optical cavity, two highly reflecting mirrors form the ends of the cavity, and the light is then trapped between the two highly reflecting mirrors, resulting in long photon residence time and long optical path length. The effects of the Rayleigh scattering of the gases in the cavity and stability of the UV-LED light source were discussed in this paper. The reflectivity of the highly reflecting mirror was calibrated by the difference of Rayleigh scattering of He and N2, and the optimum averaging time of the IBBCEAS instrument was confirmed to be 320 s by the Allan variance analysis. Detection limits (1) of 0.22 ppb for HONO and 0.45 ppb for NO2 were achieved with an optimum acquisition time of 320 s. In order to test the accuracy of measured results by the IBBCEAS instrument, concentrations of HONO and NO2 were recorded during about continuous three days by the IBBCEAS instrument and compared with the results obtained by a different optical absorption spectroscopy (DOAS) instrument. The results of HONO show a linear correction factor (R2) of 0.917, in a slope of 0.897 with an offset of 0.13 ppb; NO2 concentration measured by the IBBCEAS instrument accords well with the result obtained by the DOAS instrument, with a linear correlation of R2 = 0.937, in a slope of 0.914 with an offset of-0.17 ppb.
      通信作者: 秦敏, mqin@aiofm.ac.cn
    • 基金项目: 国家自然科学基金 (批准号: 61275151, 41305139)、中国科学院战略性先导科技专项 (B 类) (批准号: XDB05040200, XDB-05010500)、国家高技术研究发展计划(批准号: 2014AA06A508) 和安徽省自然科学基金(批准号: 1408085QD75)资助的课题.
      Corresponding author: Qin Min, mqin@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275151, 41305139), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB05040200, XDB05010500), the National High Technology Research and Development Program of China (Grant No. 2014AA06A508) and the Natural Science Foundation of Anhui Province, China (Grant No. 1408085QD75).
    [1]

    Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner F X, Andreae M O, Cheng P, Zhang Y, Poschl U 2011 Science 333 1616

    [2]

    Kulmala M, Petaja T 2011 Science 333 1586

    [3]

    Oswald R, Behrendt T, Ermel M, Wu D, Su H, Cheng Y, Breuninger C, Moravek A, Mougin E, Delon C, Loubet B, Pommerening-Roeser A, Soergel M, Poeschl U, Hoffmann T, Andreae M O, Meixner F X, Trebs I 2013 Science 341 1233

    [4]

    Crabtree K N, Talipov M R, Martinez Jr O, O’Connor G D, Khursan S L, McCarthy M C 2013 Science 342 1354

    [5]

    Li X, Rohrer F, Hofzumahaus A, Brauers T, Haeseler R, Bohn B, Broch S, Fuchs H, Gomm S, Holland F, Jaeger J, Kaiser J, Keutsch F N, Lohse I, Lu K, Tillmann R, Wegener R, Wolfe G M, Mentel T F, Kiendler-Scharr A, Wahner A 2014 Science 344 292

    [6]

    Fiedler S E, Hese A, Ruth A A 2003 Chem. Phys. Lett. 371 284

    [7]

    Ling L Y, Xie P H, Qin M, Fang W, Jiang Y, Hu R Z, Zheng N N 2013 Chin. Opt. Lett. 11 063001

    [8]

    Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68

    [9]

    Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916

    [10]

    Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Measur. Tech. 4 1759

    [11]

    Dorn H P, Apodaca R L, Ball S M, Brauers T, Brown S S, Crowley J N, Dubé W P, Fuchs H, Häseler R, Heitmann U, Jones R L, Kiendler-Scharr A, Labazan I, Langridge J M, Meinen J, Mentel T F, Platt U, Pöhler D, Rohrer F, Ruth A A, Schlosser E, Schuster G, Shillings A J L, Simpson W R, Thieser J, Tillmann R, Varma R, Venables D S, Wahner A 2013 Atmos. Measur. Tech. 6 1111

    [12]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758

    [13]

    Wu T, Coeur-Tourneur C, Dhont G, Cassez A, Fertein E, He X, Chen W 2014 J. Quantit. Spectrosc. Radiat. Trans. 133 199

    [14]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471

    [15]

    Wu T, Chen W, Fertein E, Cazier F, Dewaele D, Gao X 2011 Appl. Phys. B 106 501

    [16]

    Wu T, Zha Q, Chen W, Xu Z, Wang T, He X 2014 Atmos. Environ. 95 544

    [17]

    Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2007 Environ. Sci. Technol. 42 890

    [18]

    Thalman R, Volkamer R 2010 Atmos. Measur. Tech. 3 1797

    [19]

    Hoch D J, Buxmann J, Sihler H, Pöhler D, Zetzsch C, Platt U 2014 Atmos. Measur. Tech. 7 199

    [20]

    Ling L Y, Qin M, Xie P H, Hu R Z, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sin. 61 140703(in Chinese) [凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 61 140703]

    [21]

    Ling L Y, Xie P H, Qin M, Hu R Z, Zheng N N 2013 J. Atmos. Environ. Opt. 1 10(in Chinese) [凌六一, 谢品华, 秦敏, 胡仁志, 郑尼娜 2013 大气与环境光学学报 1 10]

    [22]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779

    [23]

    Axson J L, Washenfelder R A, Kahan T F, Young C J, Vaida V, Brown S S 2011 Atmos. Chem. Phys. 11 11581

    [24]

    Stutz J, Kim E, Platt U, Bruno P, Perrino C, Febo A 2000 J. Geophys. Res. 105 14585

    [25]

    Qin M, Xie P H, Liu W Q, Li A, Dou K, Fang W, Liu J G, Zhang W J 2006 J. Environ. Sci. 18 69

    [26]

    Qin M, Xie P H, Su H, Gu J, Peng F M, Li S W, Zeng L M, Liu J G, Liu W Q, Zhang Y H 2009 Atmos. Environ. 43 5731

    [27]

    Li X, Brauers T, Häseler R, Bohn B, Fuchs H, Hofzumahaus A, Holland F, Lou S, Lu K D, Rohrer F, Hu M, Zeng L M, Zhang Y H, Garland R M, Su H, Nowak A, Wiedensohler A, Takegawa N, Shao M, Wahner A 2012 Atmos. Chem. Phys. 12 1497

  • [1]

    Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner F X, Andreae M O, Cheng P, Zhang Y, Poschl U 2011 Science 333 1616

    [2]

    Kulmala M, Petaja T 2011 Science 333 1586

    [3]

    Oswald R, Behrendt T, Ermel M, Wu D, Su H, Cheng Y, Breuninger C, Moravek A, Mougin E, Delon C, Loubet B, Pommerening-Roeser A, Soergel M, Poeschl U, Hoffmann T, Andreae M O, Meixner F X, Trebs I 2013 Science 341 1233

    [4]

    Crabtree K N, Talipov M R, Martinez Jr O, O’Connor G D, Khursan S L, McCarthy M C 2013 Science 342 1354

    [5]

    Li X, Rohrer F, Hofzumahaus A, Brauers T, Haeseler R, Bohn B, Broch S, Fuchs H, Gomm S, Holland F, Jaeger J, Kaiser J, Keutsch F N, Lohse I, Lu K, Tillmann R, Wegener R, Wolfe G M, Mentel T F, Kiendler-Scharr A, Wahner A 2014 Science 344 292

    [6]

    Fiedler S E, Hese A, Ruth A A 2003 Chem. Phys. Lett. 371 284

    [7]

    Ling L Y, Xie P H, Qin M, Fang W, Jiang Y, Hu R Z, Zheng N N 2013 Chin. Opt. Lett. 11 063001

    [8]

    Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68

    [9]

    Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916

    [10]

    Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Measur. Tech. 4 1759

    [11]

    Dorn H P, Apodaca R L, Ball S M, Brauers T, Brown S S, Crowley J N, Dubé W P, Fuchs H, Häseler R, Heitmann U, Jones R L, Kiendler-Scharr A, Labazan I, Langridge J M, Meinen J, Mentel T F, Platt U, Pöhler D, Rohrer F, Ruth A A, Schlosser E, Schuster G, Shillings A J L, Simpson W R, Thieser J, Tillmann R, Varma R, Venables D S, Wahner A 2013 Atmos. Measur. Tech. 6 1111

    [12]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758

    [13]

    Wu T, Coeur-Tourneur C, Dhont G, Cassez A, Fertein E, He X, Chen W 2014 J. Quantit. Spectrosc. Radiat. Trans. 133 199

    [14]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471

    [15]

    Wu T, Chen W, Fertein E, Cazier F, Dewaele D, Gao X 2011 Appl. Phys. B 106 501

    [16]

    Wu T, Zha Q, Chen W, Xu Z, Wang T, He X 2014 Atmos. Environ. 95 544

    [17]

    Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2007 Environ. Sci. Technol. 42 890

    [18]

    Thalman R, Volkamer R 2010 Atmos. Measur. Tech. 3 1797

    [19]

    Hoch D J, Buxmann J, Sihler H, Pöhler D, Zetzsch C, Platt U 2014 Atmos. Measur. Tech. 7 199

    [20]

    Ling L Y, Qin M, Xie P H, Hu R Z, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sin. 61 140703(in Chinese) [凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 61 140703]

    [21]

    Ling L Y, Xie P H, Qin M, Hu R Z, Zheng N N 2013 J. Atmos. Environ. Opt. 1 10(in Chinese) [凌六一, 谢品华, 秦敏, 胡仁志, 郑尼娜 2013 大气与环境光学学报 1 10]

    [22]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779

    [23]

    Axson J L, Washenfelder R A, Kahan T F, Young C J, Vaida V, Brown S S 2011 Atmos. Chem. Phys. 11 11581

    [24]

    Stutz J, Kim E, Platt U, Bruno P, Perrino C, Febo A 2000 J. Geophys. Res. 105 14585

    [25]

    Qin M, Xie P H, Liu W Q, Li A, Dou K, Fang W, Liu J G, Zhang W J 2006 J. Environ. Sci. 18 69

    [26]

    Qin M, Xie P H, Su H, Gu J, Peng F M, Li S W, Zeng L M, Liu J G, Liu W Q, Zhang Y H 2009 Atmos. Environ. 43 5731

    [27]

    Li X, Brauers T, Häseler R, Bohn B, Fuchs H, Hofzumahaus A, Holland F, Lou S, Lu K D, Rohrer F, Hu M, Zeng L M, Zhang Y H, Garland R M, Su H, Nowak A, Wiedensohler A, Takegawa N, Shao M, Wahner A 2012 Atmos. Chem. Phys. 12 1497

  • [1] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算.  , 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] 赵淑钰, 徐滨滨, 赵振宇, 吕雪芹. 顶部反射镜对GaN基共振腔发光二极管性能的影响研究.  , 2022, 71(4): 047801. doi: 10.7498/aps.71.20211720
    [3] 蒋福春, 刘瑞友, 彭冬生, 刘文, 柴广跃, 李百奎, 武红磊. 基于光谱法的发光二极管稳态热阻测量方法.  , 2021, 70(9): 098501. doi: 10.7498/aps.70.20201093
    [4] 赵淑钰, 徐滨滨, 赵振宇, 吕雪芹. 顶部反射镜对GaN基共振腔发光二极管性能的影响研究.  , 2021, (): . doi: 10.7498/aps.70.20211720
    [5] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展.  , 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [6] 李闯, 蔡理, 李伟伟, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 李成, 危波. 水合肼还原的氧化石墨烯吸附NO2的实验研究.  , 2019, 68(11): 118102. doi: 10.7498/aps.68.20182242
    [7] 曹渊, 田兴, 程刚, 刘锟, 王贵师, 朱公栋, 高晓明. 基于光纤耦合宽带LED光源的Herriott池 测量NO2的研究.  , 2019, 68(16): 164201. doi: 10.7498/aps.68.20190243
    [8] 刘萌娇, 张新稳, 王炯, 秦雅博, 陈月花, 黄维. 非周期微纳结构增强有机发光二极管光耦合输出的研究进展.  , 2018, 67(20): 207801. doi: 10.7498/aps.67.20181209
    [9] 朱冰, 冯灏. 运用R矩阵方法研究低能电子与NO2分子的散射.  , 2017, 66(24): 243401. doi: 10.7498/aps.66.243401
    [10] 陈湛旭, 万巍, 何影记, 陈耿炎, 陈泳竹. 利用单层密排的纳米球提高发光二极管的出光效率.  , 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [11] 弓志娜, 云峰, 丁文, 张烨, 郭茂峰, 刘硕, 黄亚平, 刘浩, 王帅, 冯仑刚, 王江腾. 光致电化学法提高垂直结构发光二极管出光效率的研究.  , 2015, 64(1): 018501. doi: 10.7498/aps.64.018501
    [12] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究.  , 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [13] 胡明, 刘青林, 贾丁立, 李明达. n型有序多孔硅基氧化钨室温气敏性能研究.  , 2013, 62(5): 057102. doi: 10.7498/aps.62.057102
    [14] 焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪. 有机发光二极管的光致磁电导效应.  , 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [15] 杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维. 有机发光二极管光取出技术研究进展.  , 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [16] 张运炎, 范广涵, 章勇, 郑树文. 掺杂GaN间隔层对双波长发光二极管光谱调控作用的研究.  , 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
    [17] 李建军, 杨臻, 韩军, 邓军, 邹德恕, 康玉柱, 丁亮, 沈光地. 用于POF的高性能共振腔发光二极管.  , 2009, 58(9): 6304-6307. doi: 10.7498/aps.58.6304
    [18] 李素文, 谢品华, 刘文清, 司福祺, 李 昂, 彭夫敏. 发光二极管在差分吸收光谱系统中的应用研究.  , 2008, 57(3): 1963-1967. doi: 10.7498/aps.57.1963
    [19] 顾晓玲, 郭 霞, 梁 庭, 林巧明, 郭 晶, 吴 迪, 徐丽华, 沈光地. GaN基双波长发光二极管电致发光谱特性研究.  , 2007, 56(9): 5531-5535. doi: 10.7498/aps.56.5531
    [20] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管.  , 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
计量
  • 文章访问数:  6212
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-02
  • 修回日期:  2015-06-15
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map