-
石墨烯纳米网(GNM)是一种具有周期性纳米孔分布的单层石墨烯, 在热电能量转换、热能存储、场效应晶体管等领域具有广阔的应用前景. 本文采用非平衡分子动力学与晶格动力学的方法对GNM的热输运机理进行研究. 结果表明: GNM的导热系数随纳米孔数量的增加而减小, 部分原因归因于声子布拉格散射引起的带隙产生和声子群速度的降低; 横向和纵向纳米孔的间距共同影响GNM热输运过程, 当水平间距较小时, GNM的导热系数随纵向间距的增大单调减小, 随横向间距的增大单调增大; 随着水平间距的增大, 在声子干涉和散射的共同作用下, 导热系数产生明显的波动. 这些结论可为GNM中的热输运调控提供理论参考.Graphene nanomesh (GNM) is a single-layer graphene material that has a periodic distribution of nanoscale pores. GNM shows great potential applications in various fields such as thermoelectric energy conversion, energy storage, and field-effect transistors. In this study we utilize non-equilibrium molecular dynamics and lattice dynamics method to investigate the thermal transport mechanism of GNM. The thermal conductivity of GNM is mainly affected by the number of nanoscale pores and their horizontal and vertical spacing. Our study finds that as the number of nanoscale pores increases, the thermal conductivity of GNM decreases significantly. Additionally, the increase of the number of nanoscale pores causes phonon branch to be folded and confined, which results in a flatter dispersion curve, wider bandgap, and slower phonon group velocity. Moreover, the horizontal and vertical spacing of the nanoscale pores jointly affect the thermal transport process of GNM. When the horizontal spacing is small, the thermal conductivity of GNM decreases monotonically with the increase of vertical spacing, and increases monotonically with an increase of horizontal spacing. However, as the horizontal spacing increases, the interference effect caused jointly by phonon reflection and superposition leads to significant fluctuations in thermal conductivity. The analysis of the spectral heat flow, density of states, participation rate, and group velocity of GNM indicate that the variation in vertical spacing leads to different phonon contributions to heat flow, resulting in fluctuations in the thermal conductivity of GNM. These findings could serve as a reference for controlling the thermal transport of graphene nanomesh, and are of great significance in regulating the thermal conductivity and designing nanoscale pores in GNM.
-
Keywords:
- graphene nanomesh /
- non-equilibrium molecular dynamics /
- heat transport /
- interference effect
[1] Harzheim A, Koenemann F, Gotsmann B, van der Zant H, Gehring P 2020 Adv. Funct. Mater. 30 2000574Google Scholar
[2] Gayner C, Sharma R, Malkik I, et al. 2022 Nano Energy 94 106943Google Scholar
[3] Mukherjee D, Das P, Kundu S, Mandal B 2022 Chemosphere 300 134432Google Scholar
[4] Zang W, Liu Z, Kulkarni G S, Zhu H 2021 Nano Lett. 21 10301Google Scholar
[5] Ruse E, Larboni M, Lavi A, Pyrikov M, Leibovitch Y, Ohayon-Lavi A, Vradman L, Regev O 2021 Carbon 176 168Google Scholar
[6] Lin Y C, Mutlu Z, Borin Barin G, et al. 2023 Carbon 205 519Google Scholar
[7] Ruan X L, Feng T L 2016 Carbon 101 107Google Scholar
[8] Oh J, Yoo H, Choi J, Kim J Y, Lee D S, Kim M J, Lee J C, Kim W N, Grossman J C, Park J C 2017 Nano Energy 35 26Google Scholar
[9] Dollfus P, Viet H N, Saint-Martin J 2015 J. Phys. Condens. Matter 27 133204Google Scholar
[10] Evans W J, Hu L, Keblinski P 2010 Appl. Phys. Lett. 96 203112Google Scholar
[11] Xie G F, Shen Y L 2015 Phys. Chem. Chem. Phys. 17 8822Google Scholar
[12] Wang Y, Qiu B, Ruan X 2012 Appl. Phys. Lett. 101 013101Google Scholar
[13] Polanco C A, Lindsay L 2018 Phys. Rev. B 97 014303Google Scholar
[14] Hu S Q, Chen J, Yang N, Li B W 2017 Carbon 116 139Google Scholar
[15] Feng T L, Ruan X L, Ye Z Q, Cao B Y 2015 Phys. Rev. B 91 224301Google Scholar
[16] Li M, Deng T, Zheng B 2019 J. Nanomater. 9 347Google Scholar
[17] Felix I M, Pereira L F C 2020 Carbon 160 335Google Scholar
[18] Maldovan M 2015 Nat. Mater. 14 667Google Scholar
[19] Wang Z Y, Hao Z Y, Yu Y Y, et al. 2021 Adv. Mater. 33 2170129Google Scholar
[20] Hu S, Zhang Z, Jiang P 2018 J. Phys. Chem. Lett. 9 3959Google Scholar
[21] Liu Y, Ren W, An M, Dong L, Gao L, Shai X, Wei T, Nie L, Hu S, Zeng C 2022 Front. Mater. 9 913764Google Scholar
[22] Lee J, Lee W, Wehmeyer G 2017 Nat. Commun. 8 14054Google Scholar
[23] Cui L, Wei G S, Li Z, Du X Z 2021 Int. J. Heat Mass Tran. 165 120685Google Scholar
[24] Hu S, Zhang Z, Jiang P 2018 J. Phys. Chem. Lett 9 3959Google Scholar
[25] Yang L, Chen J, Yang N, Li B W 2015 Int. J. Heat Mass Tran. 91 428Google Scholar
[26] Wang X Y, Wang M, Hong Y, Wang Z R, Zhang J C 2017 Phys. Chem. Chem. Phys. 19 24240Google Scholar
[27] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[28] Kinaci A, Haskins J B, Sevik C 2012 Phys. Rev. B 86 115410Google Scholar
[29] Song J R, Xu Z H, He X D, Bai Y J, Miao L L, Cai C C, Wang R G 2019 Phys. Chem. Chem. Phys. 21 12977Google Scholar
[30] 徐贤达, 赵磊, 孙伟峰 2020 69 047101Google Scholar
Xu X D, Zhao L, Sun W F 2020 Acta. Phys. Sin. 69 047101Google Scholar
[31] Wei N, Chen Y, Cai K, Zhao J H, Wang H Q, Zheng J C 2016 Carbon 104 203Google Scholar
[32] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华 2014 63 107801Google Scholar
Tang J, Liu A P, Li P G, Shen J Q, Tang H W 2014 Acta. Phys. Sin. 63 107801Google Scholar
[33] Yarifard M, Davoodi J, Rafii-tabar H 2017 Comp. Mater. Sci. 126 29Google Scholar
[34] Anufriev R, Maire J, Nomura M 2021 APL Mater. 9 070701Google Scholar
-
-
[1] Harzheim A, Koenemann F, Gotsmann B, van der Zant H, Gehring P 2020 Adv. Funct. Mater. 30 2000574Google Scholar
[2] Gayner C, Sharma R, Malkik I, et al. 2022 Nano Energy 94 106943Google Scholar
[3] Mukherjee D, Das P, Kundu S, Mandal B 2022 Chemosphere 300 134432Google Scholar
[4] Zang W, Liu Z, Kulkarni G S, Zhu H 2021 Nano Lett. 21 10301Google Scholar
[5] Ruse E, Larboni M, Lavi A, Pyrikov M, Leibovitch Y, Ohayon-Lavi A, Vradman L, Regev O 2021 Carbon 176 168Google Scholar
[6] Lin Y C, Mutlu Z, Borin Barin G, et al. 2023 Carbon 205 519Google Scholar
[7] Ruan X L, Feng T L 2016 Carbon 101 107Google Scholar
[8] Oh J, Yoo H, Choi J, Kim J Y, Lee D S, Kim M J, Lee J C, Kim W N, Grossman J C, Park J C 2017 Nano Energy 35 26Google Scholar
[9] Dollfus P, Viet H N, Saint-Martin J 2015 J. Phys. Condens. Matter 27 133204Google Scholar
[10] Evans W J, Hu L, Keblinski P 2010 Appl. Phys. Lett. 96 203112Google Scholar
[11] Xie G F, Shen Y L 2015 Phys. Chem. Chem. Phys. 17 8822Google Scholar
[12] Wang Y, Qiu B, Ruan X 2012 Appl. Phys. Lett. 101 013101Google Scholar
[13] Polanco C A, Lindsay L 2018 Phys. Rev. B 97 014303Google Scholar
[14] Hu S Q, Chen J, Yang N, Li B W 2017 Carbon 116 139Google Scholar
[15] Feng T L, Ruan X L, Ye Z Q, Cao B Y 2015 Phys. Rev. B 91 224301Google Scholar
[16] Li M, Deng T, Zheng B 2019 J. Nanomater. 9 347Google Scholar
[17] Felix I M, Pereira L F C 2020 Carbon 160 335Google Scholar
[18] Maldovan M 2015 Nat. Mater. 14 667Google Scholar
[19] Wang Z Y, Hao Z Y, Yu Y Y, et al. 2021 Adv. Mater. 33 2170129Google Scholar
[20] Hu S, Zhang Z, Jiang P 2018 J. Phys. Chem. Lett. 9 3959Google Scholar
[21] Liu Y, Ren W, An M, Dong L, Gao L, Shai X, Wei T, Nie L, Hu S, Zeng C 2022 Front. Mater. 9 913764Google Scholar
[22] Lee J, Lee W, Wehmeyer G 2017 Nat. Commun. 8 14054Google Scholar
[23] Cui L, Wei G S, Li Z, Du X Z 2021 Int. J. Heat Mass Tran. 165 120685Google Scholar
[24] Hu S, Zhang Z, Jiang P 2018 J. Phys. Chem. Lett 9 3959Google Scholar
[25] Yang L, Chen J, Yang N, Li B W 2015 Int. J. Heat Mass Tran. 91 428Google Scholar
[26] Wang X Y, Wang M, Hong Y, Wang Z R, Zhang J C 2017 Phys. Chem. Chem. Phys. 19 24240Google Scholar
[27] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[28] Kinaci A, Haskins J B, Sevik C 2012 Phys. Rev. B 86 115410Google Scholar
[29] Song J R, Xu Z H, He X D, Bai Y J, Miao L L, Cai C C, Wang R G 2019 Phys. Chem. Chem. Phys. 21 12977Google Scholar
[30] 徐贤达, 赵磊, 孙伟峰 2020 69 047101Google Scholar
Xu X D, Zhao L, Sun W F 2020 Acta. Phys. Sin. 69 047101Google Scholar
[31] Wei N, Chen Y, Cai K, Zhao J H, Wang H Q, Zheng J C 2016 Carbon 104 203Google Scholar
[32] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华 2014 63 107801Google Scholar
Tang J, Liu A P, Li P G, Shen J Q, Tang H W 2014 Acta. Phys. Sin. 63 107801Google Scholar
[33] Yarifard M, Davoodi J, Rafii-tabar H 2017 Comp. Mater. Sci. 126 29Google Scholar
[34] Anufriev R, Maire J, Nomura M 2021 APL Mater. 9 070701Google Scholar
计量
- 文章访问数: 2725
- PDF下载量: 64
- 被引次数: 0