-
介绍了435—465 nm波段非相干宽带腔增强吸收光谱(IBBCEAS)技术对碘氧自由基(IO)的定量方法. 为准确获取IO的浓度信息, 对IBBCEAS系统高反镜的镜片反射率、有效腔长及损耗等参数进行了标定. 利用氮气和氦气之间瑞利散射的差异性标定了高反镜的反射率曲线, 在IO吸收峰436.1 nm处镜片反射率R为0.99982, 真空状态下有效吸收光程达到3.83 km. 根据O4的吸收, 修正后系统的有效腔长为60.7 cm. 采用艾伦方差对系统的性能进行评估, 在60 s时间分辨率下, 系统对IO和NO2的探测限(2σ)分别为1.9 pptv和20 pptv (1 pptv (part per trillion by volume) = 10–12). 通过鼓泡法将溶于碘化钾(KI)溶液的碘带出, 并将其光解后与臭氧反应产生稳定浓度的IO样气, 对IO在采样管内的损耗进行了标定, 结果表明IO的损耗可以忽略. 利用IBBCEAS系统对IO的线性进行测定, 在39—530 pptv的浓度范围下IO的测量浓度与配比浓度的相关系数R2为0.99. 进而, 利用该系统对海带排放的碘与臭氧反应生成的IO进行了测量.
-
关键词:
- 碘氧自由基 /
- 非相干光宽带腔增强吸收光谱技术 /
- 定量
The quantitative method of iodine monoxide radical (IO) using incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) in the 435–465 nm band is described in this paper. In order to obtain the concentration of IO accurately, the parameters such as the mirror reflectivity, effective cavity length and sample loss of the IBBCEAS system are evaluated. Using the difference of Rayleigh scattering between nitrogen and helium, the reflectivity curve of the high-reflection mirror is obtained. The reflectivity R of the mirror at 436.1 nm of the IO absorption peak is about 0.99982, and the effective absorption optical path reaches 3.83 km under vacuum condition. According to the absorption of O4, the effective cavity length of the modified system is 60.7 cm. The Allan deviation is used to evaluate the performance of the system, and the standard deviation is used to analyze the detection sensitivity of the system. When the time resolution is 60 s, the detection sensitivity (2σ) of the system for IO and NO2 are 1.9 pptv and 20 pptv (part per trillion by volume), respectively. The iodine dissolved in potassium iodide (KI) solution is taken out by the bubbling method and react with ozone after photolysis to produce a stable concentration of IO sample gas. The IO loss in the sampling tube is calibrated, and the results show that the sampling tube has no significant effect on the IO loss. The IBBCEAS system is used to determine the linearity of IO, and the correlation coefficient R2 between the measured concentration of IO and the proportioned concentration in a concentration range from 39 to 530 pptv is 0.99. The IO produced by the reaction of iodine released from kelp with ozone is measured.-
Keywords:
- iodine monoxide radical /
- incoherent broadband cavity enhanced absorption spectroscopy /
- quantitative determination
[1] Seitz K, Buxmann J, Pohler D, Sommer T, Tschritter J, Neary T, O'Dowd C, Platt U 2010 Atmos. Chem. Phys. 10 2117Google Scholar
[2] Commane R, Seitz K, Bale C S E, Bloss W J, Buxmann J, Ingham T, Platt U, Pöhler D, Heard D E 2011 Atmos. Chem. Phys. 11 6721Google Scholar
[3] Furneaux K L, Whalley L K, Heard D E, Atkinson H M, Bloss W J, Flynn M J, Gallagher M W, Ingham T, Kramer L, Lee J D, Leigh R, McFiggans G B, Mahajan A S, Monks P S, Oetjen H, Plane J M C, Whitehead J D 2010 Atmos. Chem. Phys. 10 3645Google Scholar
[4] Gómez Martín J C, Mahajan A S, Hay T D, Prados-Román C, Ordóñez C, MacDonald S M, Plane J M C, Sorribas M, Gil M, Paredes Mora J F, Agama Reyes M V, Oram D E, Leedham E, Saiz-Lopez A 2013 J. Geophys. Res.: Atmospheres 118 887Google Scholar
[5] Mahajan A S, Shaw M, Oetjen H, Hornsby K E, Carpenter L J, Kaleschke L, Tian-Kunze X, Lee J D, Moller S J, Edwards P, Commane R, Ingham T, Heard D E, Plane J M C 2010 J. Geophys. Res. 115 D20303Google Scholar
[6] Coburn S, Dix B, Sinreich R, Volkamer R 2011 Atmospheric Measurement Techniques 4 2421Google Scholar
[7] Alicke B, Hebestreit K, Stutz J, Platt U 1999 Nature 397 572Google Scholar
[8] Gravestock T J, Blitz M A, Heard D E 2010 Phys. Chem. Chem. Phys. 12 823Google Scholar
[9] Wada R, Beames J M, Orr-Ewing A J 2007 J. Atmos. Chem. 58 69Google Scholar
[10] Grilli R, Mejean G, Kassi S, Ventrillard I, Abd-Alrahman C, Romanini D 2012 Environ. Sci. Technol. 46 10704Google Scholar
[11] Whalley L K, Furneaux K L, Gravestock T, Atkinson H M, Bale C S E, Ingham T, Bloss W J, Heard D E 2007 J. Atmos. Chem. 58 19Google Scholar
[12] Ashu-Ayem E R, Nitschke U, Monahan C, Chen J, Darby S B, Smith P D, O'Dowd C D, Stengel D B, Venables D S 2012 Environ. Sci. Technol. 46 10413Google Scholar
[13] Thalman R, Volkamer R 2010 Atmospheric Measurement Techniques 3 1797Google Scholar
[14] Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471Google Scholar
[15] Barbero A, Blouzon C, Savarino J, Caillon N, Dommergue A, Grilli R 2020 Atmospheric Measurement Techniques 13 4317Google Scholar
[16] Wei N, Hu C, Zhou S, Ma Q, Mikuska P, Vecera Z, Gai Y, Lin X, Gu X, Zhao W, Fang B, Zhang W, Chen J, Liu F, Shan X, Sheng L 2017 RSC Adv. 7 56779Google Scholar
[17] Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K, Tang K, Liang S, Meng F, Hu Z, Xie P, Liu W, Häsler R 2018 Atmospheric Measurement Techniques 11 4531Google Scholar
[18] 凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 61 140703Google Scholar
Ling L Y, Qin M, Xie P H, Hu Z R, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sinc. 61 140703Google Scholar
[19] Spietz P, Martin J C G, Burrows J P 2005 J. Photoch. Photobio. A 176 50Google Scholar
[20] Voigt S, Orphal J, Burrows J P 2002 J. Photoch. Photobio. A 149 1Google Scholar
[21] Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Muller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transf. 130 4Google Scholar
[22] Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmospheric Chem. Phys. 8 7779Google Scholar
[23] Liang S, Qin M, Xie P, Duan J, Fang W, He Y, Xu J, Liu J, Li X, Tang K, Meng F, Ye K, Liu J, Liu W 2019 Atmospheric Measurement Techniques 12 2499Google Scholar
[24] Thalman R, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar
[25] Axson J L, Washenfelder R A, Kahan T F, Young C J, Vaida V, Brown S S 2011 Atmospheric Chem. Phys. 11 11581Google Scholar
[26] Tang K, Qin M, Fang W, Duan J, Meng F, Ye K, Zhang H, Xie P, He Y, Xu W, Liu J, Liu W 2020 Atmospheric Measurement Techniques 13 6487Google Scholar
[27] 覃志松, 赵南京, 殷高方, 石朝毅, 甘婷婷, 肖雪, 段静波, 张小玲, 陈双, 刘建国, 刘文清 2017 光学学报 37 0730002
Qin Z S, Zhao N J, Yin G F, Shi C Y, Gan T T, Xiao X, Duan J B, Zhang X L, Chen S, Liu J G, Liu W Q 2017 Acta Opt. Sin. 37 0730002
[28] 刘晶, 刘文清, 赵南京, 张玉均, 马明俊, 殷高方, 戴庞达, 王志刚, 王春龙, 段静波, 余晓娅, 方丽 2013 光谱学与光谱分析 33 2443Google Scholar
Liu J, Liu W, Zhao N, Zhang Y, Ma M, Yin G, Dai P, Wang Z, Wang C, Duan J, Yu X, Fang L 2013 Spectrosc Spect Anal. 33 2443Google Scholar
-
图 2 (a)镜片反射率标定曲线, 黑线为镜片反射率曲线, 红线为氦气谱, 蓝线为氮气谱; (b) 435—465 nm波段主要吸收成分IO, NO2, H2O, O4的吸收截面
Fig. 2. (a) Reflectivity calibration of the mirror reflectivity. The blue and red curves represent intensity spectrum when the cavity is filled with N2 and He, respectively. The black line represents derived mirror reflectivity curve. (b) Cross sections of NO2 (sky blue line), H2O (grey line), IO (red line) and O4 (black line) in the 435–465 nm band.
图 4 IBBCEAS系统的评估 (a)和(b)分别是测量N2背景下光谱反演的NO2和IO的浓度时间序列; (c)和(d)分别是NO2和IO的艾伦方差及标准偏差随平均时间的变化曲线
Fig. 4. Evaluation of the performance of IBBCEAS instrument. Panels (a) and (b) are the time series of NO2 and IO concentrations with 3 s acquisition time when the cavity is filled with N2. Panels (c) and (d) are the variation curves of Allan and standard deviation plots for NO2 and IO with mean time, respectively
图 5 三套系统测量的NO2浓度时间序列图, 黑线为中心波长为436 nm的IBBCEAS系统的NO2浓度时间序列, 红线为中心波长为368 nm的IBBCEAS系统的NO2浓度时间序列, 蓝线为LP-DOAS系统的NO2浓度时间序列
Fig. 5. Comparison of NO2 concentration measured by three different instruments. The black, red and blue dotted lines denote the NO2 concentrations measured by IBBCEAS (center wavelength: 368 nm and 436 nm) and LP-DOAS, respectively.
图 6 (a) IBBCEAS (中心波长368 nm)和IBBCEAS (中心波长436 nm)测量的NO2浓度的相关性; (b) IBBCEAS (中心波长436 nm)和LP-DOAS测量的NO2浓度的相关性
Fig. 6. (a) Correlation analysis of NO2 concentrations measured by two IBBCEAS instruments (center wavelength: 368 nm and 436 nm); (b) correlation of NO2 concentrations measured by IBBCEAS instrument (center wavelength: 436 nm) and LP-DOAS.
表 1 相关IO测量仪器检测限和时间分辨率对比
Table 1. Comparison of detection limit and time resolution of correlated IO measuring instruments.
系统 时间分
辨率检测限(2σ) 参考文献 LP-DOAS 60 s 1.25 pptv Commane等[2] (2011) MAX-DOAS 60 s 1.3 × 1013 molecule·cm–2 Coburn等[6] (2011) LIF 300 s 0.6 pptv Gravestocket等[8] (2010) CRDS 30 s 10 pptv Wada等[9] (2007) ML-CEAS 300 s 20 ppqv Grilli等[10] (2012) IBBCEAS 60 s 30 pptv Vaughan等[14] (2008) IBBCEAS 60 s 4.4 pptv Ashu-Ayem等[12] (2012) IBBCEAS 22 min 0.6 pptv Thalman等[13] (2010) IBBCEAS 60 s 1.9 pptv This work -
[1] Seitz K, Buxmann J, Pohler D, Sommer T, Tschritter J, Neary T, O'Dowd C, Platt U 2010 Atmos. Chem. Phys. 10 2117Google Scholar
[2] Commane R, Seitz K, Bale C S E, Bloss W J, Buxmann J, Ingham T, Platt U, Pöhler D, Heard D E 2011 Atmos. Chem. Phys. 11 6721Google Scholar
[3] Furneaux K L, Whalley L K, Heard D E, Atkinson H M, Bloss W J, Flynn M J, Gallagher M W, Ingham T, Kramer L, Lee J D, Leigh R, McFiggans G B, Mahajan A S, Monks P S, Oetjen H, Plane J M C, Whitehead J D 2010 Atmos. Chem. Phys. 10 3645Google Scholar
[4] Gómez Martín J C, Mahajan A S, Hay T D, Prados-Román C, Ordóñez C, MacDonald S M, Plane J M C, Sorribas M, Gil M, Paredes Mora J F, Agama Reyes M V, Oram D E, Leedham E, Saiz-Lopez A 2013 J. Geophys. Res.: Atmospheres 118 887Google Scholar
[5] Mahajan A S, Shaw M, Oetjen H, Hornsby K E, Carpenter L J, Kaleschke L, Tian-Kunze X, Lee J D, Moller S J, Edwards P, Commane R, Ingham T, Heard D E, Plane J M C 2010 J. Geophys. Res. 115 D20303Google Scholar
[6] Coburn S, Dix B, Sinreich R, Volkamer R 2011 Atmospheric Measurement Techniques 4 2421Google Scholar
[7] Alicke B, Hebestreit K, Stutz J, Platt U 1999 Nature 397 572Google Scholar
[8] Gravestock T J, Blitz M A, Heard D E 2010 Phys. Chem. Chem. Phys. 12 823Google Scholar
[9] Wada R, Beames J M, Orr-Ewing A J 2007 J. Atmos. Chem. 58 69Google Scholar
[10] Grilli R, Mejean G, Kassi S, Ventrillard I, Abd-Alrahman C, Romanini D 2012 Environ. Sci. Technol. 46 10704Google Scholar
[11] Whalley L K, Furneaux K L, Gravestock T, Atkinson H M, Bale C S E, Ingham T, Bloss W J, Heard D E 2007 J. Atmos. Chem. 58 19Google Scholar
[12] Ashu-Ayem E R, Nitschke U, Monahan C, Chen J, Darby S B, Smith P D, O'Dowd C D, Stengel D B, Venables D S 2012 Environ. Sci. Technol. 46 10413Google Scholar
[13] Thalman R, Volkamer R 2010 Atmospheric Measurement Techniques 3 1797Google Scholar
[14] Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471Google Scholar
[15] Barbero A, Blouzon C, Savarino J, Caillon N, Dommergue A, Grilli R 2020 Atmospheric Measurement Techniques 13 4317Google Scholar
[16] Wei N, Hu C, Zhou S, Ma Q, Mikuska P, Vecera Z, Gai Y, Lin X, Gu X, Zhao W, Fang B, Zhang W, Chen J, Liu F, Shan X, Sheng L 2017 RSC Adv. 7 56779Google Scholar
[17] Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K, Tang K, Liang S, Meng F, Hu Z, Xie P, Liu W, Häsler R 2018 Atmospheric Measurement Techniques 11 4531Google Scholar
[18] 凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 61 140703Google Scholar
Ling L Y, Qin M, Xie P H, Hu Z R, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sinc. 61 140703Google Scholar
[19] Spietz P, Martin J C G, Burrows J P 2005 J. Photoch. Photobio. A 176 50Google Scholar
[20] Voigt S, Orphal J, Burrows J P 2002 J. Photoch. Photobio. A 149 1Google Scholar
[21] Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Muller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transf. 130 4Google Scholar
[22] Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmospheric Chem. Phys. 8 7779Google Scholar
[23] Liang S, Qin M, Xie P, Duan J, Fang W, He Y, Xu J, Liu J, Li X, Tang K, Meng F, Ye K, Liu J, Liu W 2019 Atmospheric Measurement Techniques 12 2499Google Scholar
[24] Thalman R, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar
[25] Axson J L, Washenfelder R A, Kahan T F, Young C J, Vaida V, Brown S S 2011 Atmospheric Chem. Phys. 11 11581Google Scholar
[26] Tang K, Qin M, Fang W, Duan J, Meng F, Ye K, Zhang H, Xie P, He Y, Xu W, Liu J, Liu W 2020 Atmospheric Measurement Techniques 13 6487Google Scholar
[27] 覃志松, 赵南京, 殷高方, 石朝毅, 甘婷婷, 肖雪, 段静波, 张小玲, 陈双, 刘建国, 刘文清 2017 光学学报 37 0730002
Qin Z S, Zhao N J, Yin G F, Shi C Y, Gan T T, Xiao X, Duan J B, Zhang X L, Chen S, Liu J G, Liu W Q 2017 Acta Opt. Sin. 37 0730002
[28] 刘晶, 刘文清, 赵南京, 张玉均, 马明俊, 殷高方, 戴庞达, 王志刚, 王春龙, 段静波, 余晓娅, 方丽 2013 光谱学与光谱分析 33 2443Google Scholar
Liu J, Liu W, Zhao N, Zhang Y, Ma M, Yin G, Dai P, Wang Z, Wang C, Duan J, Yu X, Fang L 2013 Spectrosc Spect Anal. 33 2443Google Scholar
计量
- 文章访问数: 5007
- PDF下载量: 64
- 被引次数: 0