Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Relationship between hydrogen bond network dynamics of water and its terahertz spectrum

Duan Tong-Chuan Yan Shao-Jian Zhao Yan Sun Ting-Yu Li Yang-Mei Zhu Zhi

Citation:

Relationship between hydrogen bond network dynamics of water and its terahertz spectrum

Duan Tong-Chuan, Yan Shao-Jian, Zhao Yan, Sun Ting-Yu, Li Yang-Mei, Zhu Zhi
PDF
HTML
Get Citation
  • Water is the source of all life. The understanding of the terahertz absorption spectrum of water is the prerequisite for the application of terahertz technology to biomedicine. The choice of terahertz frequency is essential for achieving the biological effects of terahertz with high efficiency and low energy consumption. The complex hydrogen bond network of water possesses a broad terahertz absorption peak. Therefore, it is necessary to study the relation between the dynamics of the hydrogen bond network of water and its terahertz absorption spectrum. However, the research in this field is still lacking. Using molecular dynamics simulation methods, the terahertz absorption spectra of different water models at room temperature and pressure are studied in this work. Furthermore, taking the temperature as a variable, the dependence of the terahertz absorption spectrum of water on the strength of the hydrogen bond network is explored. It is found that rising temperature makes the terahertz absorption spectrum of the hydrogen bond network red-shift, indicating that the center frequency of the spectrum is strongly correlated with the strength of the hydrogen bond. Further studies show that there is a linear relationship between the hydrogen bond lifetime of water and the center frequency of vibration absorption peak of the hydrogen bond network. The underlying mechanism can be disclosed by imitating the hydrogen bonds in the hydrogen bond network as springs then using the spring oscillator model. These findings are conducive to understanding in depth the complex hydrogen bond network dynamics in water and promoting the study of terahertz biological effects.
      Corresponding author: Li Yang-Mei, sunberry1211@hotmail.com ; Zhu Zhi, zhuzhi@usst.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1200404), the National Natural Science Foundation of China (Grant No. 11904231), the Sailing Program of Shanghai, China (Grant No. 19YF1434100), and the National Defense Technology Innovation Special Zone, China.
    [1]

    Ball P 2017 Proc. Natl. Acad. Sci. U.S.A. 114 13327Google Scholar

    [2]

    Ball P 2008 Chem. Rev. 108 74Google Scholar

    [3]

    Xie Z, Li Z, Lou G, Liang Q, Chen J X, Kou J L, Wei G N 2021 Commun. Theor. Phys. 73 055602Google Scholar

    [4]

    Xie Z, Li Z, Li J Y, Kou J L, Yao J, Fan J T 2021 J. Chem. Phys. 154 024705Google Scholar

    [5]

    王强, 曹则贤 2019 68 015101Google Scholar

    Wang Q, Cao Z X 2019 Acta Phys. Sin. 68 015101Google Scholar

    [6]

    方海平 2016 65 186101Google Scholar

    Fang H P 2016 Acta Phys. Sin. 65 186101Google Scholar

    [7]

    叶树集, 李传召, 张佳慧, 谈军军, 罗毅 2019 68 013101Google Scholar

    Ye S J, Li C Z, Zhang J H, Tan J J, Luo Y 2019 Acta Phys. Sin. 68 013101Google Scholar

    [8]

    Qi C H, Zhu Z, Wang C L, Zheng Y J 2021 J. Phys. Chem. Lett. 12 931Google Scholar

    [9]

    Zhang Q L, Wu Y X, Yang R Y, Zhang J L, Wang R F 2021 Chem. Phys. Lett. 762 138139Google Scholar

    [10]

    Zhou G B, Li L, Peng K L, Wang X P, Yang Z 2021 J. Phys. Chem. C 125 7971Google Scholar

    [11]

    Zhu Z, Guo H K, Jiang X K, Chen Y C, Song B, Zhu Y M, Zhuang S L 2018 J. Phys. Chem. Lett. 9 2346Google Scholar

    [12]

    Zhou G B, Huang L L 2021 Mol. Simul. 47 925Google Scholar

    [13]

    Rahman A, Stillinger F H 1971 J. Chem. Phys. 55 3336Google Scholar

    [14]

    Berendsen H J, Postma J P, van Gunsteren W F, Hermans J 1981 Interaction Models for Water in Relation to Protein Hydration//Pullman B 1981 Intermolecular Forces (Dordrecht: Springer) pp331–342

    [15]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar

    [16]

    Harrach M F, Drossel B 2014 J. Chem. Phys. 140 174501Google Scholar

    [17]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269Google Scholar

    [18]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665Google Scholar

    [19]

    Guillot B 2002 J. Mol. Liq. 101 219Google Scholar

    [20]

    Akyildiz I F, Jornet J M, Han C 2014 Phys. Commun. 12 16Google Scholar

    [21]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [22]

    Liu G Z, Chang C, Qiao Z, Wu K J, Zhu Z, Cui G Q, Peng W Y, Tang Y Z, Li J, Fan C H 2019 Adv. Funct. Mater. 29 1807862Google Scholar

    [23]

    Zhang Z Y, Yang G, Fan F, Zhong C Z, Yuan Y, Zhang X D, Chang S J 2021 Anal. Chim. Acta 1180 338871Google Scholar

    [24]

    孙怡雯, 钟俊兰, 左剑, 张存林, 但果 2015 64 168701Google Scholar

    Sun Y W, Zhong J L, Zuo J, Zhang C L, Dan G 2015 Acta Phys. Sin. 64 168701Google Scholar

    [25]

    Pickwell E, Wallace V 2006 J. Phys. D: Appl. Phys. 39 R301Google Scholar

    [26]

    Liu G Z 2018 Chin. Sci. Bull. 63 3864Google Scholar

    [27]

    Siegel P H 2004 IEEE Trans. Microwave Theory Tech. 52 2438Google Scholar

    [28]

    Zhu Z, Chang C, Shu Y S, Song B 2019 J. Phys. Chem. Lett. 11 256Google Scholar

    [29]

    Wu K J, Qi C H, Zhu Z, Wang C L, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002Google Scholar

    [30]

    Wang K C, Yang L X, Wang S M, Guo L H, Ma J L, Tang J C, Bo W F, Wu Z, Zeng B Q, Gong Y B 2020 Phys. Chem. Chem. Phys. 22 9316Google Scholar

    [31]

    Li N, Peng D L, Zhang X J, Shu Y S, Zhang F, Jiang L, Song B 2021 Nano Res. 14 40Google Scholar

    [32]

    Li Y M, Chang C, Zhu Z, Sun L, Fan C H 2021 J. Am. Chem. Soc. 143 4311Google Scholar

    [33]

    Liu X, Qiao Z, Chai Y M, Zhu Z, Wu K J, Ji W L, Li D G, Xiao Y J, Mao L Q, Chang C 2021 Proc. Natl. Acad. Sci. U.S.A. 118 2015685118Google Scholar

    [34]

    Zhang J X, He Y, Liang S S, Liao X, Li T, Qiao Z, Chang C, Jia H B, Chen X W 2021 Nat. Commun. 12 1Google Scholar

    [35]

    Zhu Z, Chen C, Chang C, Song B 2020 ACS Photonics 8 781Google Scholar

    [36]

    Liu J, Miller W H, Paesani F, Zhang W, Case D A 2009 J. Chem. Phys. 131 164509Google Scholar

    [37]

    Guillot B, Guissani Y 1997 Phys. Rev. Lett. 78 2401Google Scholar

    [38]

    Praprotnik M, Janežič D, Mavri J 2004 J. Phys. Chem. A 108 11056Google Scholar

    [39]

    Srivastava A, Malik S, Debnath A 2019 Chem. Phys. 525 110396Google Scholar

    [40]

    Chen X W, Yuan M X, Guo H, Zhu Z 2020 Chin. Phys. B 29 030505Google Scholar

    [41]

    Einstein A 1905 Ann. Phys. 17 549Google Scholar

    [42]

    Rapaport D 1983 Mol. Phys. 50 1151Google Scholar

    [43]

    Guo Y W, Qin J Y, Hu J H, Cao J H, Zhu Z, Wang C L 2020 Nucl. Sci. Tech. 31 1Google Scholar

    [44]

    Zhu Z, Sheng N, Fang H P, Wan R Z 2016 Phys. Chem. Chem. Phys. 18 30189Google Scholar

    [45]

    Zhu Z, Sheng N, Wan R Z, Fang H P 2014 J. Phys. Chem. A 118 8936Google Scholar

    [46]

    Heyden M, Sun J, Funkner S, Mathias G, Forbert H, Havenith M, Marx D 2010 Proc. Natl. Acad. Sci. U.S.A. 107 12068Google Scholar

    [47]

    Glättli A, Daura X, Van Gunsteren W F 2003 J. Comput. Chem. 24 1087Google Scholar

    [48]

    Soper A 2000 Chem. Phys. 258 121Google Scholar

    [49]

    Kubo R 1966 Rep. Prog. Phys. 29 255Google Scholar

  • 图 1  太赫兹与生物分子的密切关系以及太赫兹调控细胞动力学 (a) 生物大分子的转/振动的频率在THz频段; (b) 水的太赫兹吸收谱, 绿色区域是有望非热地调控生物分子的广义太赫兹频率的4个窗口; (c) 水的太赫兹吸收谱的振动模式[36]; (d) 太赫兹波非热调控细胞动力学, 涉及发挥细胞生物功能的水通道蛋白、DNA、钾离子通道、钙离子通道

    Figure 1.  Close relationship between terahertz and biomolecules and the regulation of cell dynamics by terahertz: (a) Frequency of rotation/vibration of biological macromolecules is in the THz frequency band; (b) terahertz absorption spectrum of water, the green region is the four frequency windows in which electromagnetic wave is expected to non-thermally regulate biomolecules; (c) vibration modes of water corresponding to its terahertz absorption spectrum[36]; (d) terahertz waves non-thermally regulate the dynamics of a cell, involving aquaporins, DNA, potassium and calcium channels that perform biological functions of the cell.

    图 2  不同水模型建模的体相水的太赫兹吸收谱和温度对其太赫兹吸收谱的影响 (a) 不同水模型建模的体相水的太赫兹吸收光谱以及实验测量所得体相水的太赫兹吸收谱之间的对比; (b) 对于不同水模型构成的体相水, 其氢键网络的太赫兹吸收谱; (c) 不同温度下, SPC/E水模型建模的体相水的太赫兹吸收谱; (d) 不同温度下, 对于SPC/E水模型构成的体相水, 其氢键网络的太赫兹吸收谱

    Figure 2.  THz absorption spectra of bulk water modeled by different water models and effects of temperature on its spectra: (a) Comparison of THz absorption spectra of bulk water under different water models and its spectra from experimental measurement; (b) THz absorption spectra of hydrogen bond network of bulk water under different water models; (c) THz absorption spectra of bulk water modeled by SPC/E water model at different temperatures; (d) THz absorption spectra of hydrogen bond network of bulk water modeled by SPC/E water model at different temperatures.

    图 3  不同水模型构成的体相水的结构和动力学性质的分析 (a) 不同水模型构成的体相水的径向分布函数; (b) 不同水模型构成的体相水的扩散系数; (c) 特定的水模型(SPC/E)下, 温度对体相水的径向分布函数的影响; (d) 不同温度下SPC/E的扩散系数

    Figure 3.  Analyses of structure and dynamic behavior of bulk water modeled by different water models: (a) Radial distribution function of bulk water under different water models; (b) diffusion coefficient of bulk water under different water models; (c) under specific water model (SPC/E), the effect of temperature on the radial distribution function of bulk water; (d) diffusion coefficient of bulk water at different temperatures.

    图 4  氢键动力学与氢键网络振动的太赫兹吸收峰的中心频率之间的关系 (a) 由不同水模型构成的体相水的氢键的自相关函数; (b) 由不同水模型构成的体相水的氢键寿命; (c) 不同水模型下, 氢键网络振动的太赫兹吸收谱的中心频率与氢键寿命的对应关系; (d) 不同温度下, 体相水的氢键寿命; (e) 不同温度下, 水的氢键网络振动的太赫兹吸收峰的中心频率与氢键寿命的关系; (f) 氢键网络示意图

    Figure 4.  Relationship between hydrogen bond dynamics and the center frequency of THz absorption spectra for the vibration of hydrogen bond network: (a) Hydrogen bond autocorrelation functions of bulk water under different water models; (b) lifetime of hydrogen bond of bulk water under different water models; (c) for bulk water under different water models, the relationship between the center frequency of THz absorption spectra for the vibration of hydrogen bond network and the lifetime of hydrogen bond; (d) lifetime of hydrogen bond for bulk water at different temperatures; (e) at different temperatures, the relationship between the center frequency of THz absorption spectra for the vibration of the hydrogen bond network and the lifetime of the hydrogen bond; (f) schematic diagram of the hydrogen bond network.

    表 1  所用水模型的力场参数的比较

    Table 1.  Comparison of the force field parameters of different water models employed.

    Water modelσO—OεOO/(kJ·mol–1)qH/eqO or qvir/eθ/(°)rH—O
    SPC3.1660.6500.410–0.820109.4701.000
    SPC/E3.1660.6500.424–0.848109.4701.000
    TIP3P3.1510.6360.417–0.834104.5200.957
    TIP4P3.1540.6490.520–1.040104.5200.957
    TIP4P-Ew3.1640.6810.524–1.048104.5200.957
    DownLoad: CSV
    Baidu
  • [1]

    Ball P 2017 Proc. Natl. Acad. Sci. U.S.A. 114 13327Google Scholar

    [2]

    Ball P 2008 Chem. Rev. 108 74Google Scholar

    [3]

    Xie Z, Li Z, Lou G, Liang Q, Chen J X, Kou J L, Wei G N 2021 Commun. Theor. Phys. 73 055602Google Scholar

    [4]

    Xie Z, Li Z, Li J Y, Kou J L, Yao J, Fan J T 2021 J. Chem. Phys. 154 024705Google Scholar

    [5]

    王强, 曹则贤 2019 68 015101Google Scholar

    Wang Q, Cao Z X 2019 Acta Phys. Sin. 68 015101Google Scholar

    [6]

    方海平 2016 65 186101Google Scholar

    Fang H P 2016 Acta Phys. Sin. 65 186101Google Scholar

    [7]

    叶树集, 李传召, 张佳慧, 谈军军, 罗毅 2019 68 013101Google Scholar

    Ye S J, Li C Z, Zhang J H, Tan J J, Luo Y 2019 Acta Phys. Sin. 68 013101Google Scholar

    [8]

    Qi C H, Zhu Z, Wang C L, Zheng Y J 2021 J. Phys. Chem. Lett. 12 931Google Scholar

    [9]

    Zhang Q L, Wu Y X, Yang R Y, Zhang J L, Wang R F 2021 Chem. Phys. Lett. 762 138139Google Scholar

    [10]

    Zhou G B, Li L, Peng K L, Wang X P, Yang Z 2021 J. Phys. Chem. C 125 7971Google Scholar

    [11]

    Zhu Z, Guo H K, Jiang X K, Chen Y C, Song B, Zhu Y M, Zhuang S L 2018 J. Phys. Chem. Lett. 9 2346Google Scholar

    [12]

    Zhou G B, Huang L L 2021 Mol. Simul. 47 925Google Scholar

    [13]

    Rahman A, Stillinger F H 1971 J. Chem. Phys. 55 3336Google Scholar

    [14]

    Berendsen H J, Postma J P, van Gunsteren W F, Hermans J 1981 Interaction Models for Water in Relation to Protein Hydration//Pullman B 1981 Intermolecular Forces (Dordrecht: Springer) pp331–342

    [15]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar

    [16]

    Harrach M F, Drossel B 2014 J. Chem. Phys. 140 174501Google Scholar

    [17]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269Google Scholar

    [18]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665Google Scholar

    [19]

    Guillot B 2002 J. Mol. Liq. 101 219Google Scholar

    [20]

    Akyildiz I F, Jornet J M, Han C 2014 Phys. Commun. 12 16Google Scholar

    [21]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [22]

    Liu G Z, Chang C, Qiao Z, Wu K J, Zhu Z, Cui G Q, Peng W Y, Tang Y Z, Li J, Fan C H 2019 Adv. Funct. Mater. 29 1807862Google Scholar

    [23]

    Zhang Z Y, Yang G, Fan F, Zhong C Z, Yuan Y, Zhang X D, Chang S J 2021 Anal. Chim. Acta 1180 338871Google Scholar

    [24]

    孙怡雯, 钟俊兰, 左剑, 张存林, 但果 2015 64 168701Google Scholar

    Sun Y W, Zhong J L, Zuo J, Zhang C L, Dan G 2015 Acta Phys. Sin. 64 168701Google Scholar

    [25]

    Pickwell E, Wallace V 2006 J. Phys. D: Appl. Phys. 39 R301Google Scholar

    [26]

    Liu G Z 2018 Chin. Sci. Bull. 63 3864Google Scholar

    [27]

    Siegel P H 2004 IEEE Trans. Microwave Theory Tech. 52 2438Google Scholar

    [28]

    Zhu Z, Chang C, Shu Y S, Song B 2019 J. Phys. Chem. Lett. 11 256Google Scholar

    [29]

    Wu K J, Qi C H, Zhu Z, Wang C L, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002Google Scholar

    [30]

    Wang K C, Yang L X, Wang S M, Guo L H, Ma J L, Tang J C, Bo W F, Wu Z, Zeng B Q, Gong Y B 2020 Phys. Chem. Chem. Phys. 22 9316Google Scholar

    [31]

    Li N, Peng D L, Zhang X J, Shu Y S, Zhang F, Jiang L, Song B 2021 Nano Res. 14 40Google Scholar

    [32]

    Li Y M, Chang C, Zhu Z, Sun L, Fan C H 2021 J. Am. Chem. Soc. 143 4311Google Scholar

    [33]

    Liu X, Qiao Z, Chai Y M, Zhu Z, Wu K J, Ji W L, Li D G, Xiao Y J, Mao L Q, Chang C 2021 Proc. Natl. Acad. Sci. U.S.A. 118 2015685118Google Scholar

    [34]

    Zhang J X, He Y, Liang S S, Liao X, Li T, Qiao Z, Chang C, Jia H B, Chen X W 2021 Nat. Commun. 12 1Google Scholar

    [35]

    Zhu Z, Chen C, Chang C, Song B 2020 ACS Photonics 8 781Google Scholar

    [36]

    Liu J, Miller W H, Paesani F, Zhang W, Case D A 2009 J. Chem. Phys. 131 164509Google Scholar

    [37]

    Guillot B, Guissani Y 1997 Phys. Rev. Lett. 78 2401Google Scholar

    [38]

    Praprotnik M, Janežič D, Mavri J 2004 J. Phys. Chem. A 108 11056Google Scholar

    [39]

    Srivastava A, Malik S, Debnath A 2019 Chem. Phys. 525 110396Google Scholar

    [40]

    Chen X W, Yuan M X, Guo H, Zhu Z 2020 Chin. Phys. B 29 030505Google Scholar

    [41]

    Einstein A 1905 Ann. Phys. 17 549Google Scholar

    [42]

    Rapaport D 1983 Mol. Phys. 50 1151Google Scholar

    [43]

    Guo Y W, Qin J Y, Hu J H, Cao J H, Zhu Z, Wang C L 2020 Nucl. Sci. Tech. 31 1Google Scholar

    [44]

    Zhu Z, Sheng N, Fang H P, Wan R Z 2016 Phys. Chem. Chem. Phys. 18 30189Google Scholar

    [45]

    Zhu Z, Sheng N, Wan R Z, Fang H P 2014 J. Phys. Chem. A 118 8936Google Scholar

    [46]

    Heyden M, Sun J, Funkner S, Mathias G, Forbert H, Havenith M, Marx D 2010 Proc. Natl. Acad. Sci. U.S.A. 107 12068Google Scholar

    [47]

    Glättli A, Daura X, Van Gunsteren W F 2003 J. Comput. Chem. 24 1087Google Scholar

    [48]

    Soper A 2000 Chem. Phys. 258 121Google Scholar

    [49]

    Kubo R 1966 Rep. Prog. Phys. 29 255Google Scholar

  • [1] Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Research on terahertz real-time near-field spectral imaging. Acta Physica Sinica, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [2] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [3] Yan Zhi-Jin, Shi Wei. Radiation characteristics of terahertz GaAs photoconductive antenna arrays. Acta Physica Sinica, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [4] Sun Zhi-Wei, He Yan, Tang Yuan-Zheng. Water distribution in confined space of single-wall carbon nanotube. Acta Physica Sinica, 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [5] Qin Xiao-Ling, Zhu Xu-Liang, Cao Jing-Wen, Wang Hao-Cheng, Zhang Peng. Investigation of hydrogen bond vibrations of ice. Acta Physica Sinica, 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [6] Zhu Zhi, Yan Shao-Jian, Duan Tong-Chuan, Zhao Yan, Sun Ting-Yu, Li Yang-Mei. THz electromagnetic wave regulated dissolution of methane hydrate. Acta Physica Sinica, 2021, 70(24): 248705. doi: 10.7498/aps.70.20211779
    [7] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [8] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [9] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [10] Wang Wen-Peng, Liu Fu-Sheng, Zhang Ning-Chao. Structural transformation of liquid water under shock compression condition. Acta Physica Sinica, 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [11] Wang Sheng-Han, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Men Zhi-Wei. Influence of laser-induced plasma on stimulated Raman scatting of OH stretching vibrational from water molecules. Acta Physica Sinica, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [12] Zhang Yun-An, Tao Jun-Yong, Chen Xun, Liu Bin. Influence of water on the tensile properties of amorphous silica:a reactive molecular dynamics simulation. Acta Physica Sinica, 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [13] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [14] Wang Jun-Guo, Liu Fu-Sheng, Li Yong-Hong, Zhang Ming-Jian, Zhang Ning-Chao, Xue Xue-Dong. The structural transition of water at quartz/water interfaces under shock compression in phase region of liquid. Acta Physica Sinica, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [15] Li Yong-Hong, Liu Fu-Sheng, Cheng Xiao-Li, Zhang Ming-Jian, Xue Xue-Dong. Crystallization of water induced by fused quartz under shock compression. Acta Physica Sinica, 2011, 60(12): 126202. doi: 10.7498/aps.60.126202
    [16] Ding Zhen-Rui, Zhao Ya-Jun, Chen Feng-Ling, Chen Jin-Zhong, Duan Shu-Xing. Magnetization mechanism of magnetized water. Acta Physica Sinica, 2011, 60(6): 064701. doi: 10.7498/aps.60.064701
    [17] Zhang Chun-Mei, Bian Xin-Chao, Chen Qiang, Fu Ya-Bo, Zhang Yue-Fei. Effect and mechanism of water on carbon nanotubes growth. Acta Physica Sinica, 2008, 57(7): 4602-4606. doi: 10.7498/aps.57.4602
    [18] Ouyang Yu, Fang Yan. The effects of H2O on the synthesis of SWCNTs by decomposing CH4 in Ar at 800℃. Acta Physica Sinica, 2005, 54(2): 578-581. doi: 10.7498/aps.54.578
    [19] Chen Ying, Qiu Xi-Jun. Collective radiation of water in cytoskeletal microtubule. Acta Physica Sinica, 2003, 52(6): 1554-1560. doi: 10.7498/aps.52.1554
    [20] Zhao Ming-Wen, Xia Yue-Yuan, Ma Yu-Chen, Liu Xiang-Dong, Ying Min-Ju. . Acta Physica Sinica, 2002, 51(11): 2440-2445. doi: 10.7498/aps.51.2440
Metrics
  • Abstract views:  9566
  • PDF Downloads:  412
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2021
  • Accepted Date:  27 September 2021
  • Available Online:  28 September 2021
  • Published Online:  20 December 2021

/

返回文章
返回
Baidu
map