搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水对无定形SiO2拉伸特性影响的反应分子动力学模拟

张云安 陶俊勇 陈循 刘彬

引用本文:
Citation:

水对无定形SiO2拉伸特性影响的反应分子动力学模拟

张云安, 陶俊勇, 陈循, 刘彬

Influence of water on the tensile properties of amorphous silica:a reactive molecular dynamics simulation

Zhang Yun-An, Tao Jun-Yong, Chen Xun, Liu Bin
PDF
导出引用
  • 潮湿对SiO2的强度有重要影响. 采用反应场分子动力学模拟方法,研究液态水对无定形SiO2 (a-SiO2)准静态拉伸特性的影响. 准静态拉伸模拟的结果表明,在干燥条件下,a-SiO2的拉伸强度为9.4 GPa,而在含液态水时则下降为4.7 GPa,表明液态水使得a-SiO2拉伸强度发生显著下降. 根据应力-应变曲线分析可知,干燥条件下a-SiO2结构的刚度随着拉伸应变的增加保持稳定,而含液态水的a-SiO2刚度随着拉伸应变的增加而逐步降低,并且应变为16%–20%时的应力-应变曲线类似于金属的屈服现象. 通过对拉伸过程的原子图像分析可知,含液态水a-SiO2的拉伸过程并没有发生塑性变形,而是因为应力增大加速了水解反应,使得应力-应变曲线表现出上述塑性现象.
    Humidity has an important influence on the strength of the silica (SiO2). We examine the influence of liquid water on the tensile properties of amorphous silica (a-SiO2) using reactive molecular dynamics simulation. The results of the quasi-static tension show that liquid water reduces the tensile strength of a-SiO2 significantly. The tensile strength of dry a-SiO2 is 9.4 GPa while the tensile strength of a-SiO2 in the presence of liquid water is only 4.7 GPa. The strain-stress curve of dry a-SiO2 indicates that the stiffness of the a-SiO2 structure becomes stable with the increase of strain. On the other hand, the stiffness of the a-SiO2 with liquid water is gradually reduced with the increase of tensile strain. Moreover, the strain-stress curve of a-SiO2 in a strain range of 16% to 20% in the presence of liquid water is similar to the yielding phenomenon of plastic metal. The snapshots of the a-SiO2 in the presence of liquid water during the tension show that no plastic deformation is observed. We propose that the stress-enhanced hydrolysis releases part of the stress for the rupture of the Si–O bonds, so that the stiffness of the a-SiO2 in the presence of liquid water decreases with the increase of strain.
    • 基金项目: 国家自然科学基金(批准号:51175503)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51175503).
    [1]

    Ning D, Dong X Y, Li Y G, Dong X Y, Huang B C, Sun J J, L K C, L F Y 2001 Acta Opt. Sin. 21 1417 (in Chinese) [宁鼎, 董孝义, 李乙钢, 董新永, 黄榜才, 孙建军, 吕可诚, 吕福云 2001 光学学报 21 1417]

    [2]

    Wu G M, Wang J, Shen J, Yang T H, Zhang Q Y, Zhou B, Deng Z S, Fan B, Zhou D P, Zhang F S 2001 Acta Phys. Sin. 50 175 (in Chinese) [吴广明, 王珏, 沈军, 杨天河, 张勤远, 周斌, 邓忠生, 范滨, 周东平, 张凤山 2001 50 175]

    [3]

    Yu H H, Wu H B, Li X P, Zhu Y Z, Jiang D S 2001 Acta Phys. Chim. Sin. 17 1057 (in Chinese) [余海湖, 伍宏标, 李小甫, 朱云洲, 姜德生 2001 物理化学学报 17 1057]

    [4]

    Ciccotti M 2009 J. Phys. D 42 214006

    [5]

    Freiman S W, Wiederhorn S M, Mecholsky J J 2009 J. Am. Ceram. Soc. 92 1371

    [6]

    Wiederhorn S M 1967 J. Am. Ceram. Soc. 50 407

    [7]

    Michalske T A, Freiman S W 1982 Nature 295 511

    [8]

    Michalske T A, Freiman S W 1983 J. Am. Ceram. Soc. 66 284

    [9]

    Lindsay C G, White G S, Freiman S W, Wong-Ng W 1994 J. Am. Ceram. Soc. 77 2179

    [10]

    Del Bene J E, Runge K, Bartlett R 2003 J. Comput. Mater. Sci. 27 102

    [11]

    Taylor D E, Runge K, Bartlett R 2005 J. Mol. Phys. 103 2019

    [12]

    Cao C, He Y, Torras J, Deumens E, Trickey S B, Cheng H P 2007 J. Chem. Phys. 126 211101

    [13]

    de Leeuw N H, Du Z M, Li J, Yip S, Zhu T 2003 Nano Lett. 3 1347

    [14]

    Gy R 2003 J. Non-Cryst. Solids 316 1

    [15]

    Hirao K, Tomozawa M 1987 J. Am. Ceram. Soc. 70 43

    [16]

    Silva E, Li J, Liao D, Subramanian S, Zhu T, Yip S 2006 J. Comput. Aided Mater. Des. 13 135

    [17]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396

    [18]

    van Duin A C T, Strachan A, Stewman S, Zhang Q, Xu X, Goddard W A 2003 J. Phys. Chem. A 107 3803

    [19]

    Zhou T T, Shi Y D, Huang F L 2012 Acta Phys. Chim. Sin. 28 2605 (in Chinese) [周婷婷, 石一丁, 黄风雷 2012 物理化学学报 28 2605]

    [20]

    Quenneville J, Taylor R S, van Duin A C T 2010 J. Phys. Chem. C 114 18894

    [21]

    Fogarty J C, Aktulga H M, Grama A Y, van Duin A C T, Pandit S A 2010 J. Chem. Phys. 132 174704

    [22]

    Pedone A, Malavasi G, Menziani M C, Segre U, Cormack A N 2008 Chem. Mater. 20 4356

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Aktulga H M, Fogarty J C, Pandit S A, Grama A Y 2012 Parallel Comput. 38 245

    [25]

    Verlet L 1967 Phys. Rev. 159 98

    [26]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [27]

    Rappé A K, Goddard W A 1991 J. Chem. Phys. 95 3358

    [28]

    Vashishta P, Kalia R K, Rino J P, Ebbsjö I 1990 Phys. Rev. B 41 12197

    [29]

    Vollmayr K, Kob W, Binder K 1996 Phys. Rev. B 54 15808

    [30]

    Mozzi R L, Warren B E 1969 J. Appl. Crystallogr. 2 164

    [31]

    Da Silva J R G, Pinatti D G, Anderson C E, Rudee M L 1975 Philos. Mag. 31 713

    [32]

    Sprik M, Hutter J, Parrinello M 1996 J. Chem. Phys. 105 1142

    [33]

    Clough S A, Beers Y, Klein G P, Rothman L S 1973 J. Chem. Phys. 59 2254

    [34]

    Soper A K 1994 J. Chem. Phys. 101 6888

    [35]

    Brambilla G, Payne D N 2009 Nano Lett. 9 831

    [36]

    Frenkel J Z 1926 Physica 37 572

    [37]

    Hatty V, Kahn H, Heuer A H 2008 J. Microelectromech. Syst. 17 943

    [38]

    Tsuchiya T, Inoue A, Sakata J 2000 Sens. Actuators. A 82 286

    [39]

    Sadananda K, Vasudevan A K 2011 Metall. Mater. Trans. A 42A 279

    [40]

    Zhu T, Li J, Lin X, Yip S 2005 J. Mech. Phys. Solids 53 1597

    [41]

    Tang J Y, Chen L L, Song J 2009 Nanotech. Precis. Eng. 7 173 (in Chinese) [唐洁影, 陈龙龙, 宋竞 2009 纳米技术与精密工程 7 173]

    [42]

    Muhlstein C L, Ritchie R O 2003 Int. J. Fract. 120 449

    [43]

    Guo Y Q, Huang R, Song J, Wang X, Song C, Zhang Y X 2012 Chin. Phys. B 21 066106

    [44]

    Huang C L, Feng Y H, Zhang X X, Li W, Yang M, Li J 2012 Acta Phys. Sin. 61 154402 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静2012 61 154402]

    [45]

    Elwenspoek M, Jansen H V 2004 Silicon Micromaching (Cambridge: Cambridge University Press) p55

  • [1]

    Ning D, Dong X Y, Li Y G, Dong X Y, Huang B C, Sun J J, L K C, L F Y 2001 Acta Opt. Sin. 21 1417 (in Chinese) [宁鼎, 董孝义, 李乙钢, 董新永, 黄榜才, 孙建军, 吕可诚, 吕福云 2001 光学学报 21 1417]

    [2]

    Wu G M, Wang J, Shen J, Yang T H, Zhang Q Y, Zhou B, Deng Z S, Fan B, Zhou D P, Zhang F S 2001 Acta Phys. Sin. 50 175 (in Chinese) [吴广明, 王珏, 沈军, 杨天河, 张勤远, 周斌, 邓忠生, 范滨, 周东平, 张凤山 2001 50 175]

    [3]

    Yu H H, Wu H B, Li X P, Zhu Y Z, Jiang D S 2001 Acta Phys. Chim. Sin. 17 1057 (in Chinese) [余海湖, 伍宏标, 李小甫, 朱云洲, 姜德生 2001 物理化学学报 17 1057]

    [4]

    Ciccotti M 2009 J. Phys. D 42 214006

    [5]

    Freiman S W, Wiederhorn S M, Mecholsky J J 2009 J. Am. Ceram. Soc. 92 1371

    [6]

    Wiederhorn S M 1967 J. Am. Ceram. Soc. 50 407

    [7]

    Michalske T A, Freiman S W 1982 Nature 295 511

    [8]

    Michalske T A, Freiman S W 1983 J. Am. Ceram. Soc. 66 284

    [9]

    Lindsay C G, White G S, Freiman S W, Wong-Ng W 1994 J. Am. Ceram. Soc. 77 2179

    [10]

    Del Bene J E, Runge K, Bartlett R 2003 J. Comput. Mater. Sci. 27 102

    [11]

    Taylor D E, Runge K, Bartlett R 2005 J. Mol. Phys. 103 2019

    [12]

    Cao C, He Y, Torras J, Deumens E, Trickey S B, Cheng H P 2007 J. Chem. Phys. 126 211101

    [13]

    de Leeuw N H, Du Z M, Li J, Yip S, Zhu T 2003 Nano Lett. 3 1347

    [14]

    Gy R 2003 J. Non-Cryst. Solids 316 1

    [15]

    Hirao K, Tomozawa M 1987 J. Am. Ceram. Soc. 70 43

    [16]

    Silva E, Li J, Liao D, Subramanian S, Zhu T, Yip S 2006 J. Comput. Aided Mater. Des. 13 135

    [17]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396

    [18]

    van Duin A C T, Strachan A, Stewman S, Zhang Q, Xu X, Goddard W A 2003 J. Phys. Chem. A 107 3803

    [19]

    Zhou T T, Shi Y D, Huang F L 2012 Acta Phys. Chim. Sin. 28 2605 (in Chinese) [周婷婷, 石一丁, 黄风雷 2012 物理化学学报 28 2605]

    [20]

    Quenneville J, Taylor R S, van Duin A C T 2010 J. Phys. Chem. C 114 18894

    [21]

    Fogarty J C, Aktulga H M, Grama A Y, van Duin A C T, Pandit S A 2010 J. Chem. Phys. 132 174704

    [22]

    Pedone A, Malavasi G, Menziani M C, Segre U, Cormack A N 2008 Chem. Mater. 20 4356

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Aktulga H M, Fogarty J C, Pandit S A, Grama A Y 2012 Parallel Comput. 38 245

    [25]

    Verlet L 1967 Phys. Rev. 159 98

    [26]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [27]

    Rappé A K, Goddard W A 1991 J. Chem. Phys. 95 3358

    [28]

    Vashishta P, Kalia R K, Rino J P, Ebbsjö I 1990 Phys. Rev. B 41 12197

    [29]

    Vollmayr K, Kob W, Binder K 1996 Phys. Rev. B 54 15808

    [30]

    Mozzi R L, Warren B E 1969 J. Appl. Crystallogr. 2 164

    [31]

    Da Silva J R G, Pinatti D G, Anderson C E, Rudee M L 1975 Philos. Mag. 31 713

    [32]

    Sprik M, Hutter J, Parrinello M 1996 J. Chem. Phys. 105 1142

    [33]

    Clough S A, Beers Y, Klein G P, Rothman L S 1973 J. Chem. Phys. 59 2254

    [34]

    Soper A K 1994 J. Chem. Phys. 101 6888

    [35]

    Brambilla G, Payne D N 2009 Nano Lett. 9 831

    [36]

    Frenkel J Z 1926 Physica 37 572

    [37]

    Hatty V, Kahn H, Heuer A H 2008 J. Microelectromech. Syst. 17 943

    [38]

    Tsuchiya T, Inoue A, Sakata J 2000 Sens. Actuators. A 82 286

    [39]

    Sadananda K, Vasudevan A K 2011 Metall. Mater. Trans. A 42A 279

    [40]

    Zhu T, Li J, Lin X, Yip S 2005 J. Mech. Phys. Solids 53 1597

    [41]

    Tang J Y, Chen L L, Song J 2009 Nanotech. Precis. Eng. 7 173 (in Chinese) [唐洁影, 陈龙龙, 宋竞 2009 纳米技术与精密工程 7 173]

    [42]

    Muhlstein C L, Ritchie R O 2003 Int. J. Fract. 120 449

    [43]

    Guo Y Q, Huang R, Song J, Wang X, Song C, Zhang Y X 2012 Chin. Phys. B 21 066106

    [44]

    Huang C L, Feng Y H, Zhang X X, Li W, Yang M, Li J 2012 Acta Phys. Sin. 61 154402 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静2012 61 154402]

    [45]

    Elwenspoek M, Jansen H V 2004 Silicon Micromaching (Cambridge: Cambridge University Press) p55

  • [1] 贾韫哲, 孟胜. 光激发下水体系的超快动力学.  , 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [2] 孙志伟, 何燕, 唐元政. 单壁碳纳米管受限空间内水的分布.  , 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [3] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟.  , 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [4] 孙玉鑫, 吴德凡, 赵统, 兰武, 杨德仁, 马向阳. 直拉硅单晶的机械强度: 锗和氮共掺杂的效应.  , 2021, 70(9): 098101. doi: 10.7498/aps.70.20201803
    [5] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系.  , 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [6] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟.  , 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [7] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究.  , 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [8] 王曦, 黎明, 叶方富, 周昕. DNA超分子水凝胶的粗粒化建模与模拟.  , 2017, 66(15): 150201. doi: 10.7498/aps.66.150201
    [9] 孙川琴, 黄海深, 毕庆玲, 吕勇军. 非晶态合金表面的水润湿动力学.  , 2017, 66(17): 176101. doi: 10.7498/aps.66.176101
    [10] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究.  , 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [11] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟.  , 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [12] 张传国, 杨勇, 郝汀, 张铭. 金刚石表面无定形碳氢薄膜生长的分子动力学模拟.  , 2015, 64(1): 018102. doi: 10.7498/aps.64.018102
    [13] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟.  , 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [14] 王文鹏, 刘福生, 张宁超. 冲击加载下液态水的结构相变.  , 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [15] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变.  , 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [16] 李永宏, 刘福生, 程小理, 张明建, 薛学东. 冲击加载条件下融石英对水的凝固相变的诱导效应.  , 2011, 60(12): 126202. doi: 10.7498/aps.60.126202
    [17] 颜克凤, 李小森, 陈朝阳, 徐纯钢. 整体煤气化联合循环合成气水合物法分离CO2的分子动力学模拟.  , 2010, 59(6): 4313-4321. doi: 10.7498/aps.59.4313
    [18] 张春梅, 边心超, 陈 强, 付亚波, 张跃飞. 微量水对碳纳米管形貌的影响及其机理研究.  , 2008, 57(7): 4602-4606. doi: 10.7498/aps.57.4602
    [19] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟.  , 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [20] 陈 莹, 邱锡钧. 细胞骨架微管中水的电偶极集体辐射.  , 2003, 52(6): 1554-1560. doi: 10.7498/aps.52.1554
计量
  • 文章访问数:  7193
  • PDF下载量:  503
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-21
  • 修回日期:  2013-09-21
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map