-
In this paper, a real-time near-field high-resolution THz (terahertz, THz) spectral imaging system is designed and built by using optical rectification and wave-front tilting to generate strong-field terahertz signals and based on electro-optical detection. The system can switch between large beam THz imaging and tight-focusing THz imaging, which provides a method for implementing the integrated application of the system. Since the imaging is based on the traditional THz time-domain spectroscopy method, the spectral amplitude and phase information of the sample can be obtained simultaneously. The spectral resolution is about 15 GHz. A series of micromachining samples is measured and studied by using the system, and the performance of the imaging system is analyzed by using the micron structure. The results show the superiority of the real-time high-resolution terahertz spectral imaging system in terms of spatial resolution and imaging speed. The real-time imaging frame rate is up to 20 f/s (1200 frames/min) at 1024 pixel × 512 pixel. In the large-field THz imaging, the optimal spatial resolution reaches λ/4 at 1.5 THz. In the tightly focused THz imaging, the optimal spatial resolution reaches λ/12 at 0.82 THz. These properties make the system suitable for the applications in biomedical imaging, bbological effects and other areas .
-
Keywords:
- terahertz /
- near-field imaging /
- time-domain spectroscopy /
- real-time frame rate
[1] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar
[2] Wang L P, Wu X, Peng Y, Yang Q R, Chen X H, Wu W W, Zhu Y M, Zhuang S L 2020 Biomed. Opt. Express 11 2570Google Scholar
[3] Wang X K, Cui Y, Dan H, Sun W F, Ye J S, Zhang Y 2009 Opt. Commun. 282 4683Google Scholar
[4] Yang X, Zhao X, Yang K, Liu Y P, Liu Y, Fu W L, Luo Y 2016 Trends Biotechnol. 34 810Google Scholar
[5] Ortolani M, Lee J S, Schade U, Hübers H W 2008 Appl. Phys. Lett. 93 081906Google Scholar
[6] Jiang Z, Zhang X C 1999 Opt. Express 5 243Google Scholar
[7] Peng Y, Shi C, Wang L, Wu X, Zhu Y 2019 Terahertz Sci. Appl. TW2F.3
[8] Hu B B, Nuss M C 1995 Opt. Lett. 20 1716Google Scholar
[9] Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009Google Scholar
[10] 许悦红, 张学迁, 王球, 田震, 谷建强, 欧阳春梅, 路鑫超, 张文涛, 韩家广, 张伟力 2016 65 024101Google Scholar
Xu Y H, Zhang X Q, Wang Q, Tian Z, Gu J Q, Ouyang C M, Lu X C, Zhang W T, Han J G, Zhang W L 2016 Acta Phys. Sin. 65 024101Google Scholar
[11] Cocker T L, Jelic V, Hillenbrand R, Hegmann F A 2021 Nat. Photonics 15 558
[12] Lee A W, Hu Q 2005 Opt. Lett. 30 2563Google Scholar
[13] Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105Google Scholar
[14] Stantchev R I, Sun B, Homett S M, Hobson P A, Gibson G M, Padgett M J, Hendry E 2016 Sci. Adv. 2 e1600190Google Scholar
[15] Chen S C, Feng Z, Li J, Tan W, Du H L, Cai J W, Ma Y C, He K, Ding H F, Zhai Z H, Li Z R, Qiu C W, Zhang X C, Zhu L G 2020 Light Sci. Appl. 9 1Google Scholar
[16] Wu Q, Hewitt T D, Zhang X C 1996 Appl. Phys. Lett. 69 1026Google Scholar
[17] Wang X K, Cui Y, Sun W F, Ye J, Zhang Y 2010 Opt. Commun. 283 4626Google Scholar
[18] Hirori H, Doi A, Blanchard F, Tanaka K 2011 Appl. Phys. Lett. 98 091106Google Scholar
[19] Zhu L G, Li Z R, Pu Y K 2010 Opt. Commun. 283 1873Google Scholar
[20] Li Z X, Yan S H, Zang Z Y, Geng G S. Yang Z B, Li J, Wang L H, Yao C Y, Cui H L, Chang C, Wang H B 2020 Cell Proliferation 53 e12788
[21] 韩家广, 朱亦鸣, 张雅鑫 2019 中国激光 46 0614000Google Scholar
Han J G, Zhu Y M, Zhang Y X 2019 Chin. J. Lasers 46 0614000Google Scholar
[22] Wang X K, Cui Y, Sun W, Zhang Y, Zhang C 2007 Opt. Express 15 14369Google Scholar
[23] Hillenbrand R, Keilmann F 2001 Appl. Phys. B 73 239Google Scholar
[24] Dio A, Blanchard F, Tanaka T, Tanaka K 2011 J. Infrared Millimer Waves 32 1043Google Scholar
[25] Dorney T D, Baraniuk R G, Mittleman D M 2001 JOSA A 18 1562Google Scholar
[26] Blanchard F, Razzari L, Bandulet H C, Sharma G, Morandotti R, Kieffer J C, Ozaki T, Reid M, Tiedje H F, Haugen H K, Hegmann F A 2007 Opt. Express 15 13212Google Scholar
[27] Huber A J, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R 2008 Nano Lett. 8 3766Google Scholar
[28] Andreev V G, Angeluts A A, Vdovin V A, Lukichev V F 2015 Tech. Phys. Lett. 41 180Google Scholar
-
图 6 紧聚焦太赫兹光路“N”结构成像结果分析 (a) 太赫兹时域波形; (b) 太赫兹频域频谱; (c) 时域最大值处对应的CCD相机获取的时域样品太赫兹成像; (d) 几个不同频率处的太赫兹成像; (e) 样品时域太赫兹成像分辨率结果分析; (f) 样品频域分辨率结果分析
Figure 6. THz imaging of the “N” sample by tightly focused THz beam: (a) The terahertz time domain waveform of “N” sample; (b) corresponding terahertz spectroscopy; (c) the temporal THz image from CCD camera when the waveform value is the maximum; (d) coppresponding frequency domain THz images; (e) the temporal THz imaging resolution; (f) the frequency THz imaging resolution
图 7 大视场光路下扇形样品的太赫兹成像结果 (a) 样品太赫兹时域波形; (b) 对应的样品太赫兹频谱; (c) 样品时域最大值处太赫兹成像; (d) 不同频率下太赫兹成像; (e) 样品时域分辨率分析; (f) 样品频域分辨率结果
Figure 7. THz imaging by large parallel THz beam: (a) The terahertz time domain waveform of the sample; (b) corresponding terahertz spectroscopy; (c) the temporal THz image from CCD camera when the waveform value is the maximum; (d) corresponding frequency domain THz images; (e) the temporal THz imaging resolution; (f) the frequency THz imaging resolution.
-
[1] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar
[2] Wang L P, Wu X, Peng Y, Yang Q R, Chen X H, Wu W W, Zhu Y M, Zhuang S L 2020 Biomed. Opt. Express 11 2570Google Scholar
[3] Wang X K, Cui Y, Dan H, Sun W F, Ye J S, Zhang Y 2009 Opt. Commun. 282 4683Google Scholar
[4] Yang X, Zhao X, Yang K, Liu Y P, Liu Y, Fu W L, Luo Y 2016 Trends Biotechnol. 34 810Google Scholar
[5] Ortolani M, Lee J S, Schade U, Hübers H W 2008 Appl. Phys. Lett. 93 081906Google Scholar
[6] Jiang Z, Zhang X C 1999 Opt. Express 5 243Google Scholar
[7] Peng Y, Shi C, Wang L, Wu X, Zhu Y 2019 Terahertz Sci. Appl. TW2F.3
[8] Hu B B, Nuss M C 1995 Opt. Lett. 20 1716Google Scholar
[9] Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009Google Scholar
[10] 许悦红, 张学迁, 王球, 田震, 谷建强, 欧阳春梅, 路鑫超, 张文涛, 韩家广, 张伟力 2016 65 024101Google Scholar
Xu Y H, Zhang X Q, Wang Q, Tian Z, Gu J Q, Ouyang C M, Lu X C, Zhang W T, Han J G, Zhang W L 2016 Acta Phys. Sin. 65 024101Google Scholar
[11] Cocker T L, Jelic V, Hillenbrand R, Hegmann F A 2021 Nat. Photonics 15 558
[12] Lee A W, Hu Q 2005 Opt. Lett. 30 2563Google Scholar
[13] Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105Google Scholar
[14] Stantchev R I, Sun B, Homett S M, Hobson P A, Gibson G M, Padgett M J, Hendry E 2016 Sci. Adv. 2 e1600190Google Scholar
[15] Chen S C, Feng Z, Li J, Tan W, Du H L, Cai J W, Ma Y C, He K, Ding H F, Zhai Z H, Li Z R, Qiu C W, Zhang X C, Zhu L G 2020 Light Sci. Appl. 9 1Google Scholar
[16] Wu Q, Hewitt T D, Zhang X C 1996 Appl. Phys. Lett. 69 1026Google Scholar
[17] Wang X K, Cui Y, Sun W F, Ye J, Zhang Y 2010 Opt. Commun. 283 4626Google Scholar
[18] Hirori H, Doi A, Blanchard F, Tanaka K 2011 Appl. Phys. Lett. 98 091106Google Scholar
[19] Zhu L G, Li Z R, Pu Y K 2010 Opt. Commun. 283 1873Google Scholar
[20] Li Z X, Yan S H, Zang Z Y, Geng G S. Yang Z B, Li J, Wang L H, Yao C Y, Cui H L, Chang C, Wang H B 2020 Cell Proliferation 53 e12788
[21] 韩家广, 朱亦鸣, 张雅鑫 2019 中国激光 46 0614000Google Scholar
Han J G, Zhu Y M, Zhang Y X 2019 Chin. J. Lasers 46 0614000Google Scholar
[22] Wang X K, Cui Y, Sun W, Zhang Y, Zhang C 2007 Opt. Express 15 14369Google Scholar
[23] Hillenbrand R, Keilmann F 2001 Appl. Phys. B 73 239Google Scholar
[24] Dio A, Blanchard F, Tanaka T, Tanaka K 2011 J. Infrared Millimer Waves 32 1043Google Scholar
[25] Dorney T D, Baraniuk R G, Mittleman D M 2001 JOSA A 18 1562Google Scholar
[26] Blanchard F, Razzari L, Bandulet H C, Sharma G, Morandotti R, Kieffer J C, Ozaki T, Reid M, Tiedje H F, Haugen H K, Hegmann F A 2007 Opt. Express 15 13212Google Scholar
[27] Huber A J, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R 2008 Nano Lett. 8 3766Google Scholar
[28] Andreev V G, Angeluts A A, Vdovin V A, Lukichev V F 2015 Tech. Phys. Lett. 41 180Google Scholar
Catalog
Metrics
- Abstract views: 5963
- PDF Downloads: 159
- Cited By: 0