搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击加载条件下融石英对水的凝固相变的诱导效应

李永宏 刘福生 程小理 张明建 薛学东

引用本文:
Citation:

冲击加载条件下融石英对水的凝固相变的诱导效应

李永宏, 刘福生, 程小理, 张明建, 薛学东

Crystallization of water induced by fused quartz under shock compression

Li Yong-Hong, Liu Fu-Sheng, Cheng Xiao-Li, Zhang Ming-Jian, Xue Xue-Dong
PDF
导出引用
  • 利用轻气炮冲击加载手段和透光性在线测试技术研究了融石英对水的再冲击结冰相变过程的影响.实验结果表明,当再冲击压力为1.28 GPa时,与融石英直接接触的水会发生凝固相变,而与融石英不接触的水在约2 s观测期间仍然保持液相,证实融石英对水的冲击凝固相变过程产生了明显的诱导作用.同时还给出了相变动力学的解释.
    In this paper, we study the crystallization of water due to fused quartz effect under shock compression by a gas gun and light transmission tests. The experimental results indicate that at 1.28 GPa water rapid crystallizes when the water has come into direct contact with the quartz glass. On the contrary, freezing cannot occur within 2 s, demonstrating that the observed phenomenon of the liquid-solid phase transition of water can be promoted by the fused quartz. The dynamics of the phase transition is also discussed in this paper.
    • 基金项目: 国家自然科学基金(批准号:10874141)资助的课题.
    [1]

    Mishima O, Stanley H 1998 Nature 396 329

    [2]

    Soper A 2002 Science 297 1288

    [3]
    [4]

    Ehre D, Lavert E, Lahav M, Lubomirsky I 2010 Science 327 672

    [5]
    [6]

    Mishima O, Saito S, Ohmine I 2002 Nature 416 405

    [7]
    [8]
    [9]

    Bridgman P W 1937 J. Chem. Phys. 5 964

    [10]
    [11]

    Svishchev I M, Kusalik P G 1994 Phys. Rev. Lett. 73 975

    [12]

    Walsh J M, Rice M H 1957 J. Chem. Phys. 26 815

    [13]
    [14]
    [15]

    Bastea M, Bastea S, Reaugh J E, Reisman D B 2006 Phys. Rev. B 95 241911

    [16]

    Smith R F, Eggert J H, Saculla M D 2008 Phys. Rev. Lett. 101 065701

    [17]
    [18]
    [19]

    Bastea M, Bastea S, Becker R 2009 Appl. Phys. Lett. 95 241911

    [20]

    Dolan D H, Knudson D H, Hall C A, Deeney C 2007 Nat. Phys. 3 339

    [21]
    [22]

    Dolan D H, Gupta Y M 2003 Chem. Phys. Lett. 374 608

    [23]
    [24]

    Dolan D H, Gupta Y M 2004 J. Chem. Phys. 121 9050

    [25]
    [26]

    Jing F Q, Chen J X 2006 Dynamic High-Pressure Generation Principle and Related Technologies (Beijing: National Defense Industry Press) p34 (in Chinese) [经福谦、陈俊祥 2006 动高压技术与原理 (北京:国防工业出版社) 第34页]

    [27]
    [28]

    Espinosa H D, Xu Y P 1997 J. Am. Ceram. Soc. 80 2061

    [29]
    [30]

    Li Y H, Liu F S, Cheng X L, Ma H Y, Ma X J, Sun Y Y, Zhang M J, Xue X D 2010 Acta Phys. Sin. 59 2104 (in Chinese) [李永宏、刘福生、程小理、马海云、马小娟、孙燕云、张明建、薛学东 2010 59 2104]

    [31]
    [32]
    [33]

    Zhang M J, Liu F S, Tian C L, Sun Y Y 2006 Chin. Phys. Lett. 23 2190

    [34]
    [35]

    Rice M H 1957 J. Chem. Phys. 26 824

    [36]
    [37]

    Nagayama K, Mori Y, Shimada K 2002 J. Chem. Phys. 91 476

    [38]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) p355 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社) 第355页]

    [39]
    [40]

    Mitchell A C, Nellis W J 1982 J. Chem. Phys. 76 6273

    [41]
    [42]

    Merrill L 1982 J. Phys. Chem. Ref. Data 11 1005

    [43]
    [44]

    Tang Z P 2008 Shock Induced Phase Transition (Beijing: Science Press) p290 (in Chinese) [唐志平2008 冲击相变 (北京: 科学出版社) 第290页]

    [45]
    [46]
    [47]

    Du Q, Freysz E, Shen Y R 1994 Phys. Rev. Lett. 72 238

    [48]

    Ostroverkhov V, Waychunas G A, Shen Y R 2004 Phys. Rev. Lett. 94 046102

    [49]
    [50]
    [51]

    Ostroverkhov V, Waychunas G A, Shen Y R 2004 Chem. Phys. Lett. 374 608

  • [1]

    Mishima O, Stanley H 1998 Nature 396 329

    [2]

    Soper A 2002 Science 297 1288

    [3]
    [4]

    Ehre D, Lavert E, Lahav M, Lubomirsky I 2010 Science 327 672

    [5]
    [6]

    Mishima O, Saito S, Ohmine I 2002 Nature 416 405

    [7]
    [8]
    [9]

    Bridgman P W 1937 J. Chem. Phys. 5 964

    [10]
    [11]

    Svishchev I M, Kusalik P G 1994 Phys. Rev. Lett. 73 975

    [12]

    Walsh J M, Rice M H 1957 J. Chem. Phys. 26 815

    [13]
    [14]
    [15]

    Bastea M, Bastea S, Reaugh J E, Reisman D B 2006 Phys. Rev. B 95 241911

    [16]

    Smith R F, Eggert J H, Saculla M D 2008 Phys. Rev. Lett. 101 065701

    [17]
    [18]
    [19]

    Bastea M, Bastea S, Becker R 2009 Appl. Phys. Lett. 95 241911

    [20]

    Dolan D H, Knudson D H, Hall C A, Deeney C 2007 Nat. Phys. 3 339

    [21]
    [22]

    Dolan D H, Gupta Y M 2003 Chem. Phys. Lett. 374 608

    [23]
    [24]

    Dolan D H, Gupta Y M 2004 J. Chem. Phys. 121 9050

    [25]
    [26]

    Jing F Q, Chen J X 2006 Dynamic High-Pressure Generation Principle and Related Technologies (Beijing: National Defense Industry Press) p34 (in Chinese) [经福谦、陈俊祥 2006 动高压技术与原理 (北京:国防工业出版社) 第34页]

    [27]
    [28]

    Espinosa H D, Xu Y P 1997 J. Am. Ceram. Soc. 80 2061

    [29]
    [30]

    Li Y H, Liu F S, Cheng X L, Ma H Y, Ma X J, Sun Y Y, Zhang M J, Xue X D 2010 Acta Phys. Sin. 59 2104 (in Chinese) [李永宏、刘福生、程小理、马海云、马小娟、孙燕云、张明建、薛学东 2010 59 2104]

    [31]
    [32]
    [33]

    Zhang M J, Liu F S, Tian C L, Sun Y Y 2006 Chin. Phys. Lett. 23 2190

    [34]
    [35]

    Rice M H 1957 J. Chem. Phys. 26 824

    [36]
    [37]

    Nagayama K, Mori Y, Shimada K 2002 J. Chem. Phys. 91 476

    [38]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) p355 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社) 第355页]

    [39]
    [40]

    Mitchell A C, Nellis W J 1982 J. Chem. Phys. 76 6273

    [41]
    [42]

    Merrill L 1982 J. Phys. Chem. Ref. Data 11 1005

    [43]
    [44]

    Tang Z P 2008 Shock Induced Phase Transition (Beijing: Science Press) p290 (in Chinese) [唐志平2008 冲击相变 (北京: 科学出版社) 第290页]

    [45]
    [46]
    [47]

    Du Q, Freysz E, Shen Y R 1994 Phys. Rev. Lett. 72 238

    [48]

    Ostroverkhov V, Waychunas G A, Shen Y R 2004 Phys. Rev. Lett. 94 046102

    [49]
    [50]
    [51]

    Ostroverkhov V, Waychunas G A, Shen Y R 2004 Chem. Phys. Lett. 374 608

  • [1] 张学阳, 胡望宇, 戴雄英. 冲击下铁的各向异性对晶界附近相变的影响.  , 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [2] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系.  , 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [3] 孙志伟, 何燕, 唐元政. 单壁碳纳米管受限空间内水的分布.  , 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [4] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制.  , 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [5] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应.  , 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [6] 王文鹏, 刘福生, 张宁超. 冲击加载下液态水的结构相变.  , 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [7] 蒋国平, 郝洪, 曾春航, 郝逸飞, 吴如军, 刘纪超. 冲击作用下的摩擦力效应实验研究.  , 2013, 62(11): 116203. doi: 10.7498/aps.62.116203
    [8] 张云安, 陶俊勇, 陈循, 刘彬. 水对无定形SiO2拉伸特性影响的反应分子动力学模拟.  , 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [9] 刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳. 冲击诱发NiTi形状记忆合金相变行为研究.  , 2013, 62(1): 018103. doi: 10.7498/aps.62.018103
    [10] 潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强. 铈低压冲击相变数值模拟研究.  , 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [11] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变.  , 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [12] 陈永涛, 唐小军, 李庆忠. Fe基α相合金的冲击相变及其对层裂行为的影响研究.  , 2011, 60(4): 046401. doi: 10.7498/aps.60.046401
    [13] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究.  , 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [14] 张春梅, 边心超, 陈 强, 付亚波, 张跃飞. 微量水对碳纳米管形貌的影响及其机理研究.  , 2008, 57(7): 4602-4606. doi: 10.7498/aps.57.4602
    [15] 邵建立, 王 裴, 秦承森, 周洪强. 冲击加载下孔洞诱导相变形核分析.  , 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [16] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布.  , 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究.  , 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [19] 欧阳雨, 方 炎. 水对800℃下CH4在Ar气中分解制备单壁碳纳米管的影响.  , 2005, 54(2): 578-581. doi: 10.7498/aps.54.578
    [20] 陈 莹, 邱锡钧. 细胞骨架微管中水的电偶极集体辐射.  , 2003, 52(6): 1554-1560. doi: 10.7498/aps.52.1554
计量
  • 文章访问数:  7034
  • PDF下载量:  552
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-25
  • 修回日期:  2011-07-04
  • 刊出日期:  2011-06-05

/

返回文章
返回
Baidu
map