Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tip-sample interactions in terahertz scattering scanning near-field optical microscopy and its influences

Zhang Zhuo-Cheng Wang Yue-Ying Zhang Xiao-Qiu-Yan Zhang Tian-Yu Xu Xing-Xing Zhao Tao Gong Yu-Bin Wei Yan-Yu Hu Min

Citation:

Tip-sample interactions in terahertz scattering scanning near-field optical microscopy and its influences

Zhang Zhuo-Cheng, Wang Yue-Ying, Zhang Xiao-Qiu-Yan, Zhang Tian-Yu, Xu Xing-Xing, Zhao Tao, Gong Yu-Bin, Wei Yan-Yu, Hu Min
PDF
HTML
Get Citation
  • Terahertz scattering scanning near-field optical microscopy (s-SNOM), as an important means to break through the limits of conventional optical diffraction, can achieve super-resolution imaging on a nanoscale and has a wide range of applications in biological nano-imaging, terahertz nano-spectroscopy, nanomaterials imaging, and the study of polarized excitations. As an important component of the terahertz s-SNOM, the atomic force microscope tip plays a key role in implementing the near-field excitation, detection, and enhancement. However, the tip-sample interaction can greatly affect the results. In this paper, the effects of tip-sample interaction on near-field excitation, near-field detection, and terahertz near-field spectrum in terahertz s-SNOM are revealed through simulations and experiments. First, the wave vector coupling weight of the near field excited by the tip is investigated, and it is found that the wave vector is concentrated mainly on the order of 105 cm–1, which differs from that of the general terahertz excitations by 2 to 3 orders of magnitude, indicating that the terahertz near field is difficult to excite terahertz excitations. Secondly, through theoretical and experimental studies, it is found that the metal tip interferes with the surface near-field of the graphene disk structure, which indicates the limitations of the terahertz s-SNOM in probing the near-field distribution of the structure. Finally, the influence of the tip on the near-field spectrum is studied. It is found that the tip length and cantilever length are important parameters affecting the near-field spectrum, and the influence of the tip on the near-field spectrum can be reduced by increasing the tip length or cantilever length.
      Corresponding author: Hu Min, hu_m@uestc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0701000, 2020YFA0714001), the National Natural Science Foundation of China (Grant Nos. 61988102, 61921002, 62071108), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. ZYGX2020J003, ZYGX2020ZB007).
    [1]

    Alonso-Gonzalez P, Nikitin A Y, Gao Y, Woessner A, Lundeberg M B, Principi A, Forcellini N, Yan W, Velez S, Huber A J, Watanabe K, Taniguchi T, Casanova F, Hueso L E, Polini M, Hone J, Koppens F H L, Hillenbrand R 2017 Nat. Nanotechnol. 12 31Google Scholar

    [2]

    Soltani A, Kuschewski F, Bonmann M, Generalov A, Vorobiev A, Ludwig F, Wiecha M M, Cibiraite D, Walla F, Winnerl S, Kehr S C, Eng L M, Stake J, Roskos H G 2020 Light Sci. Appl. 9 97Google Scholar

    [3]

    Stinson H T, Sternbach A, Najera O, Jing R, Mcleod A S, Slusar T V, Mueller A, Anderegg L, Kim H T, Rozenberg M, Basov D N 2018 Nat. Commun. 9 1Google Scholar

    [4]

    Yang Z, Tang D, Hu J, Tang M, Zhang M, Cui H L, Wang L, Chang C, Fan C, Li J, Wang H 2020 Small 17 2005814Google Scholar

    [5]

    Shigekawa H, Yoshida S, Takeuchi O 2014 Nat. Photonics 8 815Google Scholar

    [6]

    McLeod A S, Kelly P, Goldflam M D, Gainsforth Z, Westphal A J, Dominguez G, Thiemens M H, Fogler M M, Basov D N 2014 Phys. Rev. B 90 085136Google Scholar

    [7]

    Babicheva V E, Gamage S, Stockman M I, Abate Y 2017 Opt. Express 25 23935Google Scholar

    [8]

    Chen X, Liu X, Guo X, Chen S, Hu H, Nikulina E, Ye X, Yao Z, Bechtel H A, Martin M C, Carr G L, Dai Q, Zhuang S, Hu Q, Zhu Y, Hillenbrand R, Liu M, You G 2020 ACS Photonics 7 687Google Scholar

    [9]

    Mooshammer F, Plankl M, Siday T, Zizlsperger M, Sandner F, Vitalone R, Jing R, Huber M A, Basov D N, Huber R 2021 Opt. Lett. 46 3572Google Scholar

    [10]

    Zhang Z, Hu M, Zhang X, Wang Y, Zhang T, Xu X, Zhao T, Wu Z, Zhong R, Liu D, Wei Y, Gong Y, Liu S 2021 Appl. Phys. Express 14 102004Google Scholar

    [11]

    Zayats A V, Smolyaninov, I I 2003 J. Opt. A-Pure and Appl. Op. 5 S16Google Scholar

    [12]

    Fei Z, Andreev G O, Bao W, Zhang L M, McLeod A S, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D N 2011 Nano Lett. 11 4701Google Scholar

    [13]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [14]

    Fei Z, Goldflam M D, Wu J S, Dai S, Wagner M, McLeod A S, Liu M K, Post K W, Zhu S, Janssen G C A M, Fogler M M, Basov D N 2015 Nano Lett. 15 8271Google Scholar

    [15]

    Luo W, Cai W, Xiang Y, Wu W, Shi B, Jiang X, Zhang N, Ren M, Zhang X, Xu J 2017 Adv. Mater. 29 1701083Google Scholar

    [16]

    Duan J, Capote-Robayna N, Taboada-Gutierrez J, Alvarez-Perez G, Prieto I, Martin-Sanchez J, Nikitin A Y, Alonso-Gonzalez P 2020 Nano Lett. 20 5323Google Scholar

    [17]

    Zhang Y, Hu C, Lyu B, Li H, Ying Z, Wang L, Deng A, Luo X, Gao Q, Chen J, Du J, Shen P, Watanabe K, Taniguchi T, Kang J H, Wang F, Zhang Y, Shi Z 2020 Nano Lett. 20 2770Google Scholar

    [18]

    Venuthurumilli P K, Wen X L, Iyer V, Chen Y P, Xu X F 2019 ACS Photonics 6 2492Google Scholar

    [19]

    Gerber J A, Berweger S, O'Callahan B T, Raschke M B 2014 Phys. Rev. Lett. 113 055502Google Scholar

    [20]

    Carney P S, Deutsch B, Govyadinov A A, Hillenbrand R 2012 ACS Nano 6 8Google Scholar

    [21]

    段嘉华, 陈佳宁 2019 68 110701Google Scholar

    Duan J H, Chen J N 2019 Acta Phys. Sin. 68 110701Google Scholar

    [22]

    Zhang J, Chen X, Mills S, Ciavatti T, Yao Z, Mescall R, Hu H, Semenenko V, Fei Z, Li H, Perebeinos V, Tao H, Dai Q, Du X, Liu M 2018 ACS Photonics 5 2645Google Scholar

    [23]

    Ahn J S, Kihm H W, Kihm J E, Kim D S, Lee K G 2009 Opt. Express 17 2280Google Scholar

    [24]

    Neuman T, Alonso-González P, Garcia-Etxarri A, Schnell M, Hillenbrand R, Aizpurua J 2015 Laser Photonics Rev. 9 637Google Scholar

    [25]

    Cvitkovic A, Ocelic N, Hillenbrand R 2007 Opt. Express 15 8550Google Scholar

    [26]

    Maissen C, Chen S, Nikulina E, Govyadinov A, Hillenbrand R 2019 ACS Photonics 6 1279Google Scholar

    [27]

    Siday T, Hale L L, Hermans R I, Mitrofanov O 2020 ACS Photonics 7 596Google Scholar

    [28]

    Mastel S, Lundeberg M B, Alonso-Gonzale P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppen F H L, Nikitin A Y, Hillenbrand R 2017 Nano Lett. 17 6526Google Scholar

    [29]

    Siday T, Natrella M, Wu J, Liu H, Mitrofanov O 2017 Opt. Express 25 27874Google Scholar

    [30]

    Moon K, Park H, Kim J, Do Y, Lee S, Lee G, Kang H, Han H 2015 Nano Lett. 15 549Google Scholar

    [31]

    Moon K, Do Y, Park H, Kim J, Kang H, Lee G, Lim J H, Kim J W, Han H 2019 Sci. Rep. 9 169158Google Scholar

    [32]

    Wang Y Y, Hu M, Zhang Z C, Zhang T Y, Gong S, Wang W, Liu S G 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Maison de la Chimie, France, September 1−6, 2019 pp1,2

  • 图 1  太赫兹s-SNOM示意图

    Figure 1.  Schematic diagram of SNOM.

    图 2  (a)近场耦合权重; (b)石墨烯色散曲线

    Figure 2.  (a) Near-field coupling weight; (b) graphene dispersion curves.

    图 3  (a)石墨烯圆盘结构的仿真模型示意图; (b), (c) 在0.1和1 THz石墨烯圆盘结构表面的|Ez|分布图

    Figure 3.  (a) Schematic diagram of simulation of graphene disk; (b), (c) electric field |Ez| contour of graphene disk at 0.1 and 1 THz.

    图 4  石墨烯圆盘结构的太赫兹近场成像 (a)石墨烯圆盘的AFM形貌图; (b)−(d)石墨烯圆盘的太赫兹近场一阶、二阶、三阶成像

    Figure 4.  THz near-field imaging of graphene disk: (a) AFM topography of graphene disk; (b)−(d) THz near-field imaging of graphene disk with 1st, 2nd, 3rd harmonics.

    图 5  不同长度探针的仿真结果 (a)时域谱; (b)频域谱; (c)仿真模型

    Figure 5.  Simulation results of tips of different length: (a) Time domain signal; (b) frequency domain signal; (c) schematic diagram of simulation.

    图 6  不同长度悬臂的探针的仿真结果 (a)时域谱; (b)频域谱; (c)仿真模型; (d)长悬臂探针的时域谱; (e)长悬臂探针的频域谱

    Figure 6.  Simulation results of tips of different cantilever length: (a) Time domain signal; (b) frequency domain signal; (c) schematic diagram of simulation; (d) time domain signal of long cantilever tip; (e) frequency domain signal of long cantilever tip.

    Baidu
  • [1]

    Alonso-Gonzalez P, Nikitin A Y, Gao Y, Woessner A, Lundeberg M B, Principi A, Forcellini N, Yan W, Velez S, Huber A J, Watanabe K, Taniguchi T, Casanova F, Hueso L E, Polini M, Hone J, Koppens F H L, Hillenbrand R 2017 Nat. Nanotechnol. 12 31Google Scholar

    [2]

    Soltani A, Kuschewski F, Bonmann M, Generalov A, Vorobiev A, Ludwig F, Wiecha M M, Cibiraite D, Walla F, Winnerl S, Kehr S C, Eng L M, Stake J, Roskos H G 2020 Light Sci. Appl. 9 97Google Scholar

    [3]

    Stinson H T, Sternbach A, Najera O, Jing R, Mcleod A S, Slusar T V, Mueller A, Anderegg L, Kim H T, Rozenberg M, Basov D N 2018 Nat. Commun. 9 1Google Scholar

    [4]

    Yang Z, Tang D, Hu J, Tang M, Zhang M, Cui H L, Wang L, Chang C, Fan C, Li J, Wang H 2020 Small 17 2005814Google Scholar

    [5]

    Shigekawa H, Yoshida S, Takeuchi O 2014 Nat. Photonics 8 815Google Scholar

    [6]

    McLeod A S, Kelly P, Goldflam M D, Gainsforth Z, Westphal A J, Dominguez G, Thiemens M H, Fogler M M, Basov D N 2014 Phys. Rev. B 90 085136Google Scholar

    [7]

    Babicheva V E, Gamage S, Stockman M I, Abate Y 2017 Opt. Express 25 23935Google Scholar

    [8]

    Chen X, Liu X, Guo X, Chen S, Hu H, Nikulina E, Ye X, Yao Z, Bechtel H A, Martin M C, Carr G L, Dai Q, Zhuang S, Hu Q, Zhu Y, Hillenbrand R, Liu M, You G 2020 ACS Photonics 7 687Google Scholar

    [9]

    Mooshammer F, Plankl M, Siday T, Zizlsperger M, Sandner F, Vitalone R, Jing R, Huber M A, Basov D N, Huber R 2021 Opt. Lett. 46 3572Google Scholar

    [10]

    Zhang Z, Hu M, Zhang X, Wang Y, Zhang T, Xu X, Zhao T, Wu Z, Zhong R, Liu D, Wei Y, Gong Y, Liu S 2021 Appl. Phys. Express 14 102004Google Scholar

    [11]

    Zayats A V, Smolyaninov, I I 2003 J. Opt. A-Pure and Appl. Op. 5 S16Google Scholar

    [12]

    Fei Z, Andreev G O, Bao W, Zhang L M, McLeod A S, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D N 2011 Nano Lett. 11 4701Google Scholar

    [13]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [14]

    Fei Z, Goldflam M D, Wu J S, Dai S, Wagner M, McLeod A S, Liu M K, Post K W, Zhu S, Janssen G C A M, Fogler M M, Basov D N 2015 Nano Lett. 15 8271Google Scholar

    [15]

    Luo W, Cai W, Xiang Y, Wu W, Shi B, Jiang X, Zhang N, Ren M, Zhang X, Xu J 2017 Adv. Mater. 29 1701083Google Scholar

    [16]

    Duan J, Capote-Robayna N, Taboada-Gutierrez J, Alvarez-Perez G, Prieto I, Martin-Sanchez J, Nikitin A Y, Alonso-Gonzalez P 2020 Nano Lett. 20 5323Google Scholar

    [17]

    Zhang Y, Hu C, Lyu B, Li H, Ying Z, Wang L, Deng A, Luo X, Gao Q, Chen J, Du J, Shen P, Watanabe K, Taniguchi T, Kang J H, Wang F, Zhang Y, Shi Z 2020 Nano Lett. 20 2770Google Scholar

    [18]

    Venuthurumilli P K, Wen X L, Iyer V, Chen Y P, Xu X F 2019 ACS Photonics 6 2492Google Scholar

    [19]

    Gerber J A, Berweger S, O'Callahan B T, Raschke M B 2014 Phys. Rev. Lett. 113 055502Google Scholar

    [20]

    Carney P S, Deutsch B, Govyadinov A A, Hillenbrand R 2012 ACS Nano 6 8Google Scholar

    [21]

    段嘉华, 陈佳宁 2019 68 110701Google Scholar

    Duan J H, Chen J N 2019 Acta Phys. Sin. 68 110701Google Scholar

    [22]

    Zhang J, Chen X, Mills S, Ciavatti T, Yao Z, Mescall R, Hu H, Semenenko V, Fei Z, Li H, Perebeinos V, Tao H, Dai Q, Du X, Liu M 2018 ACS Photonics 5 2645Google Scholar

    [23]

    Ahn J S, Kihm H W, Kihm J E, Kim D S, Lee K G 2009 Opt. Express 17 2280Google Scholar

    [24]

    Neuman T, Alonso-González P, Garcia-Etxarri A, Schnell M, Hillenbrand R, Aizpurua J 2015 Laser Photonics Rev. 9 637Google Scholar

    [25]

    Cvitkovic A, Ocelic N, Hillenbrand R 2007 Opt. Express 15 8550Google Scholar

    [26]

    Maissen C, Chen S, Nikulina E, Govyadinov A, Hillenbrand R 2019 ACS Photonics 6 1279Google Scholar

    [27]

    Siday T, Hale L L, Hermans R I, Mitrofanov O 2020 ACS Photonics 7 596Google Scholar

    [28]

    Mastel S, Lundeberg M B, Alonso-Gonzale P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppen F H L, Nikitin A Y, Hillenbrand R 2017 Nano Lett. 17 6526Google Scholar

    [29]

    Siday T, Natrella M, Wu J, Liu H, Mitrofanov O 2017 Opt. Express 25 27874Google Scholar

    [30]

    Moon K, Park H, Kim J, Do Y, Lee S, Lee G, Kang H, Han H 2015 Nano Lett. 15 549Google Scholar

    [31]

    Moon K, Do Y, Park H, Kim J, Kang H, Lee G, Lim J H, Kim J W, Han H 2019 Sci. Rep. 9 169158Google Scholar

    [32]

    Wang Y Y, Hu M, Zhang Z C, Zhang T Y, Gong S, Wang W, Liu S G 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Maison de la Chimie, France, September 1−6, 2019 pp1,2

  • [1] Xiang Xing-Cheng, Ma Hai-Bei, Wang Lei, Tian Da, Zhang Wei, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Ultramicro-sensing of terahertz metamaterials implemented by using sample traps. Acta Physica Sinica, 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [2] Wang Zhi-Quan, Shi Wei. Holographic detection of pulsed terahertz waves in terahertz time-domain spectroscopy. Acta Physica Sinica, 2022, 71(18): 188704. doi: 10.7498/aps.71.20220983
    [3] Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Research on terahertz real-time near-field spectral imaging. Acta Physica Sinica, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [4] Ning Hui, Wang Kai-Cheng, Wang Shao-Meng, Gong Yu-Bin. Vibrational dynamics of hydrogen molecules under intense THz waves. Acta Physica Sinica, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [5] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [6] Xu Yue-Hong, Zhang Xue-Qian, Wang Qiu, Tian Zhen, Gu Jian-Qiang, Ouyang Chun-Mei, Lu Xin-Chao, Zhang Wen-Tao, Han Jia-Guang, Zhang Wei-Li. Near-field and far-field scanning terahertz spectroscopy based on photoconductive microprobe. Acta Physica Sinica, 2016, 65(3): 036803. doi: 10.7498/aps.65.036803
    [7] Lu Wen-Liang, Lou Shu-Qin, Wang Xin, Shen Yan, Sheng Xin-Zhi. False-color terahertz imaging system based on terahertz time domain spectrocsopy. Acta Physica Sinica, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [8] Sun Yi-Wen, Zhong Jun-Lan, Zuo Jian, Zhang Cun-Lin, Dan Guo. Principal component analysis of terahertz spectrum on hemagglutinin protein and its antibody. Acta Physica Sinica, 2015, 64(16): 168701. doi: 10.7498/aps.64.168701
    [9] Li Rui, Zhang Xiao-Mei, Li Qi-Nan, Luo Wang, Jin Ming-Xing, Xu Hai-Feng, Yan Bing. All-electron configuration interaction study on potential energy curves of low-lying excited states and spectroscopic properties of SiS. Acta Physica Sinica, 2014, 63(11): 113102. doi: 10.7498/aps.63.113102
    [10] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [11] Gao Xue-Yan, You Kai, Zhang Xiao-Mei, Liu Yan-Lei, Liu Yu-Fang. Multi-reference calculations on the potential energy curves and spectroscopic properties of the low-lying excited states of BS+. Acta Physica Sinica, 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [12] Han Yu-Long, Li Zhen, Wang Jiang-Hong, Feng Er-Yin, Huang Wu-Ying. Potential energy surface and spectra prediction for the Mg-CO complex. Acta Physica Sinica, 2013, 62(9): 093101. doi: 10.7498/aps.62.093101
    [13] Liu Tian-Yuan, Sun Cheng-Lin, Li Zuo-Wei, Zhou Mi. Raman spectroscopy study on the C/H interaction between benzene and chloroform. Acta Physica Sinica, 2012, 61(10): 107801. doi: 10.7498/aps.61.107801
    [14] Qin You-Min, Zhao Cheng-Li, He Ping-Ni, Gou Fu-Jun, Ning Jian-Ping, Lü Xiao-Dan, Bogaerts A.. Molecular dynamics simulation of temperature effects on CF+3 etching of Si surface. Acta Physica Sinica, 2010, 59(10): 7225-7231. doi: 10.7498/aps.59.7225
    [15] Wang Wei-Ning. Terahertz and Raman spectra of L-threonine. Acta Physica Sinica, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [16] Wang Wei-Ning, Li Yuan-Bo, Yue Wei-Wei. Vibrational spectrum of histidine and arginine in THz range. Acta Physica Sinica, 2007, 56(2): 781-785. doi: 10.7498/aps.56.781
    [17] Ma Shi-Hua, Shi Yu-Lei, Xu Xin-Long, Yan Wei, Yang Yu-Ping, Wang Li. Low-frequency collective vibrational modes of asparagine by terahertz time-domain spectroscopy. Acta Physica Sinica, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
    [18] Yue Wei-Wei, Wang Wei-Ning, Zhao Guo-Zhong, Zhang Cun-Lin, Yan Hai-Tao. THz spectrum of aromatic amino acid. Acta Physica Sinica, 2005, 54(7): 3094-3099. doi: 10.7498/aps.54.3094
    [19] Zhou Qing, Zhu Xinag, Li Hong-Fu. . Acta Physica Sinica, 2000, 49(2): 210-214. doi: 10.7498/aps.49.210
    [20] GUO CHANG-ZHI, HUANG YONG-ZHEN. EFFECT OF THE MODAL INTERACTION ON THE SPECTRAL LINEWIDTH IN THE NEARLY SINGLE MODE SEMICONDUCTOR LASERS. Acta Physica Sinica, 1990, 39(7): 59-65. doi: 10.7498/aps.39.59-2
Metrics
  • Abstract views:  7171
  • PDF Downloads:  291
  • Cited By: 0
Publishing process
  • Received Date:  14 September 2021
  • Accepted Date:  15 October 2021
  • Available Online:  28 October 2021
  • Published Online:  20 December 2021

/

返回文章
返回
Baidu
map