搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冰的氢键振动研究

秦晓玲 朱栩量 曹靖雯 王浩诚 张鹏

引用本文:
Citation:

冰的氢键振动研究

秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏

Investigation of hydrogen bond vibrations of ice

Qin Xiao-Ling, Zhu Xu-Liang, Cao Jing-Wen, Wang Hao-Cheng, Zhang Peng
PDF
HTML
导出引用
  • 虽然水分子结构简单, 但是关于水冰的基本理论仍有很多问题没有科学答案. 对于冰的原子分子振动, 人们对其分子内的伸缩和弯曲振动以及分子的空间转动已经研究得很清楚. 然而30年前, 高亮度的非弹中子散射实验发现, 很多冰相的远红外分子平移区中存在两个明显的特征振动峰, 对其来源一直没有定论. 本文基于第一性原理密度泛函理论的CASTEP代码, 系统研究了不同冰相的振动谱和振动模式. 在对最简单的氢有序冰Ic模型的研究中, 首次发现了两类本征的氢键振动模式. 以此为线索, 继续模拟其他的冰相, 发现无论是氢有序还是氢无序结构都存在这个规律. 利用冰晶格局域正四面体理想模型, 理论上证明了两类振动模式可分为围绕一个水分子的氢键的四键振动和双键振动. 高压下, 因为结构变形, 存在介于二者之间的耦合振动. 此外, 还有能量更低的一些光学支振动模式, 比如团簇的振动、面间振动. 冰VII/VIII, XV/VI等结构, 是由两个子晶格嵌套而成的, 两个子晶格之间还有非氢键的相对振动. 综上, 这些分子平移振动可解释所有冰相的远红外振动谱, 为冰的分子振动理论补足了最后一块拼图. 由于液态水不存在这两类氢键振动, 因此其远红外吸收带在两个氢键位置恰好是个波谷. 结合太赫兹激光技术的发展, 此理论有望在工业除冰、食品解冻、可燃冰开采和生物分子冷冻塑型等领域产生系列原创成果.
    Despite its simple molecular structure, water is still a mystery to scientists. For the atomic and molecular vibrational modes of ice, as is well known, there are two kinds of vibrations: intra-molecular O—H stretching vibration and H—O—H bending vibration within the molecules and three kinds of molecular spatial rotations. However, thirty years ago, a high flux inelastic neutron scattering experiment showed that there are two distinct characteristic peaks in the far-infrared molecular translational vibration region of many ice phases. The origins of these peaks have not been determined till now. In this work, based on the CASTEP code, a first-principles density functional theory plane wave programme, the vibrational spectra as well as the vibrational normal modes of a series of ice phases are investigated. Two kinds of intrinsic hydrogen bond vibrational modes are first found in hydrogen-ordered ice Ic. Then it is found to be a general rule among ice family. Based on the ideal model, we prove that the two vibrational modes can be classified as four-bond vibration and two-bond vibration. There are many coupling modes in-between due to tetrahedral structure deformation under high pressure. Besides, there are also some optical vibrational modes with lower energy in the translational region, such as cluster vibrations and inter-plane vibrations. In Ice VII/VIII and XV/VI, each of which consists of two sublattices, there exist non-hydrogen bond vibrations. These molecular translational vibrations can explain all the far-infrared vibrational spectrum of ice phase, which makes up the last piece of the jigsaw puzzle for the molecular vibration theory of ice. The two vibrational modes do not exist in liquid water due to the collapse of the rigid tetrahedral structure. Thus, a window remains for ice resonance absorption with minimum energy loss in water. This theory is expected to be applicable to industrial deicing, food thawing, gas hydrate mining, and biomolecule frozen molding, etc.
      通信作者: 张鹏, zhangpeng@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11075094)资助的课题
      Corresponding author: Zhang Peng, zhangpeng@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11075094)
    [1]

    邓耿, 尉志武 2016 科学通报 61 3181Google Scholar

    Deng G, Wei Z W 2016 Chin. Sci. Bull. 61 3181Google Scholar

    [2]

    Pauling L 1960 The Nature of Chemical Bond (New York: Cornell University Press) pp449–504

    [3]

    Pople J A 1957 Proc. R. Soc. London, Ser. A 239 550Google Scholar

    [4]

    Claussen W F 1951 J. Chem. Phys. 19 1425Google Scholar

    [5]

    Frank H S, Wen W Y 1957 Discuss. Faraday Soc. 24 133Google Scholar

    [6]

    Symons M C R 1972 Nature 239 257Google Scholar

    [7]

    Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund L A, Hirsch T K, Ojamae L, Glatzel P, Pettersson L G M, Nilsson A 2004 Science 304 995Google Scholar

    [8]

    Smith J D, Cappa C D, Wilson K R, Messer B M, Cohen R C, Saykally R J 2004 Science 306 851Google Scholar

    [9]

    Sun Q 2013 Chem. Phys. Lett. 568 90Google Scholar

    [10]

    Nilsson A, Wernet Ph, Nordlund D, Bergmann U, Cavalleri M 2005 Science 308 793AGoogle Scholar

    [11]

    Smith J D, Cappa C D, Messer B M, Cappa C D 2005 Science 308 793BGoogle Scholar

    [12]

    Tokushima T, Harada Y, Takahashi O, Senba Y, Ohashi H, Pettersson L G M, Nilsson A, Shin S 2008 Chem. Phys. Lett. 460 387Google Scholar

    [13]

    Raichlin Y, Millo A, Katzir A 2004 Phys. Rev. Lett. 93 185703Google Scholar

    [14]

    Russo J, Tanaka H 2014 Nat. Commun. 5 3556Google Scholar

    [15]

    Ktihne T D, Khaliullin R Z 2013 Nat. Commun. 4 1450Google Scholar

    [16]

    Ktihne T D, Khaliullin R Z 2014 J. Am. Chem. Soc. 136 3395Google Scholar

    [17]

    Bertie J E, Whalley E 1967 J. Chem. Phys. 46 1271Google Scholar

    [18]

    Tammann G 1900 Ann. Phys. 307 1Google Scholar

    [19]

    Demontis P, LeSar R, Klein M L 1988 Phys. Rev. Lett. 60 2284Google Scholar

    [20]

    Bertie J E, Calvert L D, Whalley E 1963 J. Chem. Phys. 38 840Google Scholar

    [21]

    Bridgman P W 1912 Proc. Am. Acad. Arts Sci. 47 441Google Scholar

    [22]

    Bridgman P W 1937 J. Chem. Phys. 5 964Google Scholar

    [23]

    Whalley E, Davidson D W 1965 J. Chem. Phys. 43 2148Google Scholar

    [24]

    Whalley E, Davidson D W, Heath J B R 1966 J. Chem. Phys. 45 3976Google Scholar

    [25]

    Kuhs W F, Finney J L, Vettier C, Bliss D V 1984 J. Chem. Phys. 81 3612Google Scholar

    [26]

    Whalley E, Heath J B R, Davidson D W 1968 J. Chem. Phys. 48 2362Google Scholar

    [27]

    Tajima Y, Matsuo T, Suga H 1982 Nature 299 810Google Scholar

    [28]

    Hirsch K R, Holzapfel W B 1986 J. Chem. Phys. 84 2771Google Scholar

    [29]

    Lobban C, Finney J L, Kuhs W F 1998 Nature 391 268Google Scholar

    [30]

    Matsuo T, Tajima Y, Suga H 1986 J. Phys. Chem. Solids 47 165Google Scholar

    [31]

    Salzmann C G, Radaelli P G, Mayer A E, Finney J L 2006 Science 311 1758Google Scholar

    [32]

    Tribello G A, Slater B, Salzmann C G 2006 J. Am. Chem. Soc. 128 12594Google Scholar

    [33]

    Salzmann C G, Radaelli P G, Mayer E, Finney J L 2009 Phys. Rev. Lett. 103 105701Google Scholar

    [34]

    Falenty A, Hansen T C, Kuhs W F 2014 Nature 516 213Google Scholar

    [35]

    del Rosso L, Celli M, Ulivi L 2016 Nat. Commun. 7 13394Google Scholar

    [36]

    Millot M, Hamel S, Rygg J R, Celliers P M, Collins G W, Coppari F, Fratanduono D E, Jeanloz R, Swift D C, Eggert J H 2018 Nat. Phys. 14 297Google Scholar

    [37]

    Millot M, Coppari F, Rygg J R, Barrios A C, Hamel S, Swift D C 2019 Nature 569 251Google Scholar

    [38]

    Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva IV 2015 Nature 519 443Google Scholar

    [39]

    Zhou W, Yin K, Wang C, Zhang Y, Xu T, Borisevich A, Sun L, Idrobo J C, Chisholm M F, Pantelides S T, Klie R F, Lupini A R 2015 Nature 528 E1Google Scholar

    [40]

    Koga K, Zeng X C, Tanaka H 1997 Phys. Rev. Lett. 79 5262Google Scholar

    [41]

    Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G, Jiang Y 2020 Nature 577 60Google Scholar

    [42]

    Kuhs W F, Lehmann M S 1983 J. Phys. Chem. 87 4312Google Scholar

    [43]

    Konig H 1943 Z. Kristallogr. 105 279Google Scholar

    [44]

    Dowell L G, Rinfret A P 1960 Nature 188 1144Google Scholar

    [45]

    Murray B J, Bertram A K 2006 Phys. Chem. Chem. Phys. 8 186Google Scholar

    [46]

    Murray B J 2008 Environ. Res. Lett. 3 025008Google Scholar

    [47]

    Malkin T L, Murray B J, Brukhno A V, Anwar J, Salzmann C G 2012 Proc. Natl. Acad. Sci. U. S. A. 109 1041Google Scholar

    [48]

    Whalley E 1981 Science 211 389Google Scholar

    [49]

    Mayer E, Hallbrucker A 1987 Nature 325 601Google Scholar

    [50]

    Kuhs W F, Bliss D V, Finney J L 1987 J. Phys. Colloq. 48 631Google Scholar

    [51]

    Kuhs W F, Sippel C, Falenty A, Hansen T C 2012 Proc. Natl. Acad. Sci. U. S. A. 109 21259Google Scholar

    [52]

    Murray B, Knopf D, Bertram A 2005 Nature 434 202Google Scholar

    [53]

    Falenty A, Kuhs W F 2009 J. Phys. Chem. B 113 15975Google Scholar

    [54]

    Baker J M, Dore J C, Behrens P 1997 J. Phys. Chem. B 101 6226Google Scholar

    [55]

    Malkin T L, Murray B J, Salzmann C G, Molinero V, Pickering S J, Whale T F 2015 Phys. Chem. Chem. Phys. 17 60Google Scholar

    [56]

    del Rosso L, Celli M, Grazzi F, Catti M, Ulivi L 2020 Nat. Mater. 19 663Google Scholar

    [57]

    Komatsu K, Machida S, Noritake F, Hattori T, Kagi H 2020 Nat. Commun. 11 464Google Scholar

    [58]

    Lekner J 1997 Physica B 240 263Google Scholar

    [59]

    黄盈盈, 苏艳, 赵纪军 2019 高压 33 010001Google Scholar

    Huang Y Y, Su Y, Zhao J J 2019 Chin. J. High Pressure Phys. 33 010001Google Scholar

    [60]

    Bartels-Rausch T, Bergeron V, Csrtwright J H E, Escribano R, Finney J L, Grothe H 2012 Rev. Mod. Phys. 84 885Google Scholar

    [61]

    Moberg D R, Sharp P J, Paesani F 2018 J. Phys. Chem. B 122 10572Google Scholar

    [62]

    Kamb B 1964 Acta Crystallogr. 17 1437Google Scholar

    [63]

    Finch E D 1968 J. Chem. Phys. 49 4361Google Scholar

    [64]

    Kamb B, Hamilton W C, Laplaca S J, Prakash A 1971 J. Chem. Phys. 55 1934Google Scholar

    [65]

    Fortes A D, Wood I G, Brodholt J P, Vočadlo L 2003 J. Chem. Phys. 119 4567Google Scholar

    [66]

    Bauer M, Elsaesser M S, Winkel K, Mayer E, Loerting T 2008 Phys. Rev. B 77 220105Google Scholar

    [67]

    Scheuermann M, Geil B, Löw F, Fujara F 2009 J. Chem. Phys. 130 024506Google Scholar

    [68]

    Bertie J E, Whalley E 1964 J. Chem. Phys. 40 1646Google Scholar

    [69]

    Bertie J E, Labbé H J, Whalley E 1968 J. Chem. Phys. 49 775Google Scholar

    [70]

    Bertie J E, Francis B F 1980 J. Chem. Phys. 72 2213Google Scholar

    [71]

    Bertie J E, Francis B F 1982 J. Chem. Phys. 77 1Google Scholar

    [72]

    Li J C, Londono D, Ross D K, Finney J L, Bennington S M, Taylor A D 1992 J. Phys. Condens. Matter 4 2109Google Scholar

    [73]

    Kamb B 1965 Science 150 205Google Scholar

    [74]

    Kuhs W F, Ahsbahs H, Londono D, Finney J L 1989 Physica B 156 684Google Scholar

    [75]

    Whale T F, Clark S J, Finney J L 2013 J. Raman Spectrosc. 44 290Google Scholar

    [76]

    Komatsu K, Noritake F, Machida S 2016 Sci. Rep. 6 28920Google Scholar

    [77]

    Nanda K D, Beran G J O 2013 J. Phys. Chem. Lett. 4 3165Google Scholar

    [78]

    Gasser T M, Thoeny A, Plaga L 2018 Chem. Sci. 9 4224Google Scholar

    [79]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G 1999 Nature 398 681Google Scholar

    [80]

    Vaks V G, Zinenko V I 1981 Solid State Commun. 39 643Google Scholar

    [81]

    Song M, Yamawaki H, Fujihisa H, Sakashita M, Aoki K 2003 Phys. Rev. B 68 014106Google Scholar

    [82]

    Besson J M, Kobayashi M, Nakai T, Endo S 1997 Phys. Rev. B 55 11191Google Scholar

    [83]

    Pruzan P, Chervin J C, Canny B 1993 J. Chem. Phys. 99 9842Google Scholar

    [84]

    Goncharov A F, Struzhkin V V, Somayazulu M S, Hemley R J, Mao H K 1996 Science 273 218Google Scholar

    [85]

    Aoki K, Yamawaki H, Sakashita M, Fujihisa H 1996 Phys. Rev. B 54 15673Google Scholar

    [86]

    Klug D D, Handa Y P, Tse J S, Whalley E 1989 J. Chem. Phys. 90 2390Google Scholar

    [87]

    Minceva-Sukarova B, Sherman W F, Wilkinson G R 1984 J. Phys. C: Solid State Phys. 17 5833Google Scholar

    [88]

    Li J C, Londono J D, Ross D K, Finney J L, Tomkinson J, Sherman W F 1991 J. Chem. Phys. 94 6770Google Scholar

    [89]

    Garg A K 1988 Phys. Status Solidi A 110 467Google Scholar

    [90]

    Tse J S, Klein M L, McDonald I R 1984 J. Chem. Phys. 81 6124Google Scholar

    [91]

    Holzapfel W B 1972 J. Chem. Phys. 56 712Google Scholar

    [92]

    Polian A, Grimsditch M 1984 Phys. Rev. Lett. 52 1312Google Scholar

    [93]

    Flores-Livas J A, Sanna A, Graužinytė M, Davydov A, Goedecker S, Marques M A L 2017 Sci. Rep. 7 6825Google Scholar

    [94]

    Lu X Z, Zhang Y, Zhao P, Fang S J 2011 J. Phys. Chem. B 115 71Google Scholar

    [95]

    Marqués M, Ackland G, Loveday J 2009 High Pressure Res. 29 208Google Scholar

    [96]

    Putrino A, Parrinello M 2002 Phys. Rev. Lett. 88 176401Google Scholar

    [97]

    Goncharov A F, Struzhkin V V, Mao H K, Hemley R J 1999 Phys. Rev. Lett. 83 1998Google Scholar

    [98]

    Men Z, Fang W, Li D, Li Z, Sun C 2014 Sci. Rep. 4 4606Google Scholar

    [99]

    Giauque W F, Stout J W 1936 J. Am. Chem. Soc. 58 1144Google Scholar

    [100]

    Kawada S 1972 J. Phys. Soc. Jpn. 32 1442Google Scholar

    [101]

    Leadbetter A J, Ward R C 1985 J. Chem. Phys. 82 424Google Scholar

    [102]

    Line C M B, Whitworth R W 1996 J. Chem. Phys. 104 10008Google Scholar

    [103]

    Jackson S M, Nield V M, Whitworth R W, Oguro M, Wilson C C 1997 J. Phys. Chem. B 101 6142Google Scholar

    [104]

    Salzmann C G, Radaelli P G, Finney J L, Mayer E 2008 Phys. Chem. Chem. Phys. 10 6313Google Scholar

    [105]

    Salzmann C G, Hallbrucker A, Finney J L, Mayer E 2006 Phys. Chem. Chem. Phys. 8 3088Google Scholar

    [106]

    Zhang J, Xiao Z, Kuo J 2010 J. Chem. Phys. 132 184506Google Scholar

    [107]

    Tran H, Cunha A V, Shephard J J, Shalit A, Hamm P, Jansen T L C, Salzmann C G 2017 J. Chem. Phys. 147 144501Google Scholar

    [108]

    Salzmann C G, Hallbrucker A, Finney J L, Mayer E 2006 Chem. Phys. Lett. 429 469Google Scholar

    [109]

    Yoshimura Y, Stewart S T, Mao H K, Hemley R J 2007 J. Chem. Phys. 126 174505Google Scholar

    [110]

    Koza M M, Schober H, Tölle A, Fujara F, Hansen T 1999 Nature 397 660Google Scholar

    [111]

    Koza M M, Schober H, Parker S F, Peters J 2008 Phys. Rew. B 77 104306Google Scholar

    [112]

    Huang Y Y, Zhu C Q, Wang L, Cao X X, Su Y, Jiang X, Meng S, Zhao J J, Zeng X C 2016 Sci. Adv. 2 e1501010Google Scholar

    [113]

    Huang Y Y, Zhu C Q, Wang L, Zhao J J and Zeng X C 2017 Chem. Phys. Lett. 671 186Google Scholar

    [114]

    Matsui T, Hirata M, Yagasaki T, Matsumoto M, Tanaka H 2017 J. Chem. Phys. 147 091101Google Scholar

    [115]

    Liu Y, Ojamäe L 2018 Phys. Chem. Chem. Phys. 20 8333Google Scholar

    [116]

    Engel E A, Anelli A, Ceriotti M, Pickard C J, Needs R J 2018 Nat. Commun. 9 2173Google Scholar

    [117]

    Matsui T, Yagasaki T, Matsumoto M, Tanaka H 2019 J. Chem. Phys. 150 041102Google Scholar

    [118]

    del Rosso L, Grazzi F, Celli M, Colognesi D, Garcia-Sakai V, Ulivi L 2016 J. Phys. Chem. C 120 26955Google Scholar

    [119]

    Bertie J E, Labbe H J, Whalley E 1969 J. Chem. Phys. 50 4501Google Scholar

    [120]

    Wong P T T, Whalley E 1976 J. Chem. Phys. 65 829Google Scholar

    [121]

    Rasetti F 1932 Nuovo Cirnento 9 72Google Scholar

    [122]

    Hibben J H 1937 J. Chem. Phys. 5 166Google Scholar

    [123]

    Cross P C, Burnham J, Leighton P A 1937 J. Am. Chem. Soc. 59 1134Google Scholar

    [124]

    Narayanaswarny P K 1948 Proc. Indian Acad. Sci. 27 311Google Scholar

    [125]

    Valkov V I, Maslenkova G L 1956 Opt. Spektrosk. 1 881

    [126]

    Taylor M J, Whalley E 1964 J. Chem. Phys. 40 1660Google Scholar

    [127]

    Marchi M, Tse J S, Klein M L 1986 J. Chem. Phys. 85 2414Google Scholar

    [128]

    Renker B 1973 International Symposium on the Physics and Chemistry of Ice Ottowa, Ont., Canada, August 14–18, 1972 p82

    [129]

    Li J C, Ross D K, Howe L, Hall P G, Tomkinson J 1989 Physica B 156 376Google Scholar

    [130]

    Klug D D, Tse J S, Whalley E 1991 J. Chem. Phys. 95 7011Google Scholar

    [131]

    Li J C 1996 J. Chem. Phys. 105 6733Google Scholar

    [132]

    Li J C, Ross D K 1993 Nature 365 327Google Scholar

    [133]

    Morrison I, Jenkins S 1999 Physica B 263 442Google Scholar

    [134]

    Klotz S, Strässle T, Salzmann C G, Philippe J, Parker S F 2005 Europhys. Lett. 72 576Google Scholar

    [135]

    Zhang P, Tian L, Zhang Z P, Shao G, Li J C 2012 J. Chem. Phys. 137 044504Google Scholar

    [136]

    He X, Sode O, Xantheas S S, Hirata S 2012 J. Chem. Phys. 137 204505Google Scholar

    [137]

    Zhang P, Liu Y, Yu H, Han S H, Lü Y B, Lv M S, Cong W Y 2014 Chin. Phys. B 23 026103Google Scholar

    [138]

    Zhang P, Wang Z, Lü Y B, Ding Z W 2016 Sci. Rep. 6 29273Google Scholar

    [139]

    Yuan Z Y, Zhang P, Yao S K, Lü Y B, Yang H Z, Luo H W, Zhao Z J 2017 RSC Adv. 7 36801Google Scholar

    [140]

    Yao S K, Zhang P, Zhang Y, Lü Y B, Yang T l, Sun B G, Yuan Z Y, Luo H W 2017 RSC Adv. 7 31789Google Scholar

    [141]

    Jiang L, Yao S K, Zhang K, Wang Z R, Luo H W, Zhu X L, Gu Y, Zhang P 2018 Molecules 23 2780Google Scholar

    [142]

    Qin X L, Zhu X L, Cao J W, Jiang L, Gu Y, Wang X C, Zhang P 2019 Molecules 24 3115Google Scholar

    [143]

    Zhao Z J, Qin X L, Cao J W, Zhu X L, Yang Y C, Wang H C, Zhang P 2019 ACS Omega 4 18936Google Scholar

    [144]

    Cao J W, Chen J Y, Qin X L, Zhu X L, Jiang L, Gu Y, Yu X H, Zhang P 2019 Molecules 24 3135Google Scholar

    [145]

    Zhang K, Zhang P, Wang Z R, Zhu X L, Lu Y B, Guan C B, Li Y H 2018 Molecules 23 1781Google Scholar

    [146]

    Gu Y, Zhu X L, Jiang L, Cao J W, Qin X L, Yao S K, Zhang P 2019 J. Phys. Chem. C 123 14880Google Scholar

    [147]

    Zhu X L, Cao J W, Qin X L, Jiang L, Gu Y, Wang H C, Liu Y, Kolesnikov A I, Zhang P 2020 J. Phys. Chem. C 124 1165Google Scholar

    [148]

    Wei Z W, Zhu X L, Cao J W, Qin X L, Jiang L, Gu Y, Wang H C, Zhang P 2019 AIP Adv. 9 115118Google Scholar

    [149]

    Zhu X L, Yuan Z Y, Jiang L, Zhang K, Wang Z R, Luo H W, Gu Y, Cao J W, Qin X L, Zhang P 2019 New J. Phys. 21 043054Google Scholar

    [150]

    Wang Z R, Zhu X L, Jiang L, Zhang K, Luo H W, Gu Y, Zhang P 2019 Materials 12 246Google Scholar

    [151]

    Matsumoto M, Yagasaki T, Tanaka H 2018 J. Comput. Chem. 39 61Google Scholar

    [152]

    Wang H C, Zhu X L, Cao J W, Qin X L, Yang Y C, Niu T X, LüY B, Zhang P 2020 New J. Phys. 22 093066Google Scholar

    [153]

    Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413Google Scholar

    [154]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515Google Scholar

    [155]

    Li J C, Burnham C, Kolesnikov A I, Eccleston R S 1999 Phys. Rev. B 59 9088Google Scholar

    [156]

    Kolesnikov A I, Li J C, Ross D K, et al. 1992 Phys. Lett. A 168 308Google Scholar

  • 图 1  常态冰Ih相的声子态密度(PDOS)谱. 横轴波数的单位是cm–1, 四个独立的振动带从左到右依次是分子间平移振动带(translation), 分子转动振动(libration)带, 分子内弯曲振动(bending)带, 分子内伸缩振动(stretching)带

    Fig. 1.  Phonon density of states (PDOS) spectrum of ice Ih. The four independent vibration bands from left to right are translation band, libration band, bending band, and stretching band.

    图 2  K点和截断能收敛性测试. 总能量与K点间隔的关系如图(a), 与截断能的关系如图(b)[141]

    Fig. 2.  Diagram of the K-point and energy cutoff convergence tests. The total energy against k-point separation is shown in (a) and the cutoff convergence is shown in (b)[141].

    图 3  氢有序的冰Ic相的INS谱和PDOS谱, 横轴单位为cm–1(底轴)和meV(顶轴)

    Fig. 3.  INS spectrum and PDOS spectrum of hydrogen ordered Ice Ic, the units of horizontal axis are cm–1 (bottom axis) and MeV (top axis).

    图 4  (a)布里渊区中的声子色散曲线; (b)归一化声子态密度(PDOS). PDOS曲线的纵坐标与图(a)中的纵坐标对应

    Fig. 4.  (a) The Phonon dispersion curves; (b) the corresponding integrated PDOS spectrum.

    图 5  氢有序的Ic相理想模型平动区的三种简正模式. 因为原胞仅含两个水分子, 为显示整体的振动情况, 使用了超胞来演示两类振动模式. 绿色箭头表示振动方向, 大小正比于振幅

    Fig. 5.  The three normal modes in the translational region of hydrogen ordered Ice Ic. The primitive cell contains two water molecules, and in order to show the vibration of the whole, the supercell is used to demonstrate two vibration modes. The green arrow indicates the direction of the vibration, and the magnitude is proportional to the amplitude.

    图 6  氢有序冰相PDOS计算谱, 按照压强大小排列, 从上到下依次是冰X, VIII, XIII, XV, XIV, II, IX, Ic和XI. 黄色矩形区域对应两个氢键特征峰的位置

    Fig. 6.  PDOS spectrum of hydrogen ordered Ice phases, arranged by pressure, from top to bottom are ice X, VIII, XIII, XV, XIV, II, IX, Ic and XI. The yellow rectangle region corresponds to the positions of two characteristic peaks of hydrogen bond.

    图 7  冰X相的简正振动模式, 其中450, 998, 1260和1508 cm–1波数处的振动模式都是三重简并的, 2115 cm–1处的振动模式是二重简并的

    Fig. 7.  The normal modes of ice X, the vibration modes at 450, 998, 1260 and 1508 cm–1 are triplically degenerate, and the vibration modes at 2115 cm–1 are doubly degenerate.

    图 8  冰VIII和冰VII的PDOS谱对比图. 插图为冰VIII的INS谱和计算得到的PDOS谱, 范围在2—140 meV

    Fig. 8.  PDOS spectrum of Ice VIII and VII. The inset shows the INS spectrum of Ice VIII and the computed PDOS spectrum (2–140 meV).

    图 9  (a)冰VIII和(b)冰VII的双键振动(红色)、四键振动(蓝色)、非氢键振动(绿色)三类模式的分布图. 插图为计算模拟得到的VIII和VII的PDOS谱, 范围0—350 cm–1

    Fig. 9.  Statistical distribution of two-bond vibration (red), four-bond vibration (blue) and non-hydrogen bond vibration modes (green) of Ice VIII (a) and Ice VII (b). The insertation shows the PDOS spectrum of Ice VIII and VII (0–350 cm–1).

    图 10  从上到下依次是冰Ih相的INS实验谱和模拟的PDOS谱, 冰Ih对应的氢有序相冰XI的PDOS谱, 理想模型Ic的PDOS谱

    Fig. 10.  The INS spectrum and PDOS spectrum of ice Ih, the PDOS spectrum of hydrogen ordered ice XI and the PDOS spectrum of ice Ic.

    图 11  (a)有序相冰XI和(b)冰Ih的双键振动、四键振动模式的统计分布图. 插图为计算模拟得到的XI, Ih的PDOS谱

    Fig. 11.  Statistical distribution of two-bond and four-bond vibrational modes of (a) ice XI and (b) ice Ih. The illustration shows the PDOS spectrum of XI and Ih.

    图 12  冰V/XII和冰VI/XV的PDOS谱对比图. 插图为冰VI和V的INS谱, 范围2—140 meV

    Fig. 12.  Comparisons of PDOS spectrum of Ice V/XII and Ice VI/XV. The insertation shows the INS spectrum of ice VI and V (2–140 meV).

    图 13  冰VIII平动区161 cm–1处的简正振动和冰XV在107 cm–1处的振动; 冰II平动区115 cm–1处的简正振动和冰IX在116 cm–1处的振动示意图

    Fig. 13.  The normal mode at 161 cm–1 in ice VIII and 107 cm–1 in ice XV; The normal mode at 115 cm–1 in ice II and 116 cm–1 in ice IX.

    图 14  在直角坐标系下yz平面内展示水分子的三种转动 (a)绕z轴的扭曲转动; (b)绕y轴的面间摇摆; (c)绕x轴的面内摇摆

    Fig. 14.  Three rotations of H2O: (a) Twisting around the z-axis; (b) wagging around the y-axis; (c) rocking around the x-axis

    图 15  冰Ih相的INS谱和冰XVII, XVI的PDOS谱. 蓝红两条虚线标记出冰Ih相实验谱两个氢键振动峰(226和303 cm–1)的位置

    Fig. 15.  INS spectrum of ice Ih and PDOS spectrum of ice XVII and XVI. The blue and red dotted lines mark the positions of the two hydrogen bond vibration peaks (226 and 303 cm–1) in ice Ih.

    图 16  水与冰Ih的红外吸收谱对比图

    Fig. 16.  Infrared absorption spectrum of water and ice Ih.

      氢有序冰Ic相原胞及其两类氢键振动模式

    .  Two kinds of H-bond vibrational modes in ice Ic.

      氢有序冰相IX、II和XIV中两类氢键振动模式. 波数在245, 206和194 cm–1处的振动分别为冰IX, II和XIV的双键振动模式; 波数在307, 318和292 cm–1处的分别为冰IX, II和XIV的四键振动模式 (冰XIV中振动明显的分子用黄色标记)

    .  Two kinds of H-bond vibrational modes in ice IX, II, and XIV. The two-bond vibrational modes of Ice IX, II and XIV at 245, 206 and 194 cm–1 are respectively; The four-bond vibrational modes of ice IX, II and XIV at 307, 318 and 292 cm–1, respectively (The yellow moleculars vibrate obviously in ice XIV).

      冰VII相在178 cm–1处的双键振动模式和在255 cm–1处的四键振动模式; 冰XVI相在160 cm–1处的双键振动模式和在237 cm–1处的四键振动模式 (冰VII中振幅明显的分子用黄色标记)

    .  Two-bond vibrational mode at 178 cm–1 and four-bond vibrational mode at 255 cm–1 in Ice VII phase; two-bond vibration mode at 160 cm–1 and four bond vibration mode at 237 cm–1 in ice VIII (The yellow moleculars vibrate obviously).

      冰XI相220 cm–1处的双键振动模式和310 cm–1处的四键振动模式; 冰Ih相244 cm–1处的双键振动模式和327 cm–1处的四键振动模式

    .  Two-bond vibrational mode at 220 cm–1 and four-bond vibrational mode at 310 cm–1 in ice XI; two-bond vibrational mode at 244 cm–1 and four-bond vibrational mode at 327 cm–1 in ice Ih.

      冰XIII相和冰V相在223/225 cm–1处的双键振动模式和318/312 cm–1处的四键振动模式; 冰XV相和冰VI相在206/231 cm–1处的双键振动模式和285/328 cm–1处的四键振动模式 (冰VII中振幅明显的分子用黄色原子标记)

    .  Two-bond vibrational mode at 223/225 cm–1 and four-bond vibrational mode at 318/312 cm–1 in ice XIII/V; two-bond vibrational mode at 206/231 cm–1 and four-bond vibrational mode at 285/328 cm–1 of ice XV/VI (The yellow moleculars vibrate obviously).

      冰XVII相209 cm–1处的双键振动模式和301 cm–1处的四键振动模式; 冰XVI相220 cm–1处的双键振动模式和314 cm–1处的四键振动模式 (振幅明显的原子振动用黄色标记)

    .  Two-bond mode at 209 cm–1 and four-bond mode at 301 cm–1 in ice XVII; two-bond mode at 220 cm–1 and four-bond mode at 314 cm–1 of ice XVI (The yellow moleculars vibrate obviously).

    表 1  部分冰相的计算参数. 包括静水压强、截断能、K点取样网格或K点间隔

    Table 1.  Calculation parameters of ice phases, including calculation of pressure, cutoff energy, K-mesh or seperation.

    Ice phaseEnvironmental pressure/GPaEnergy cutoff/eVK-mesh or seperation
    Ih08303 × 2 × 2
    Ic012007 × 7 × 8
    II0.507502 × 2 × 2
    V1.007502 × 2 × 1
    VI2.007502 × 2 × 2
    VII2.408303 × 3 × 2
    VIII2.4010004 × 4 × 5
    IX0.307502 × 2 × 2
    X120.008300.07/Å
    XI07506 × 6 × 3
    XIII1.008302 × 3 × 1
    XIV0.557502 × 2 × 3
    XV0.907504 × 4 × 4
    XVI07501 × 1 × 1
    XVII0.408301 × 1 × 1
    下载: 导出CSV

    表 2  各冰相的氢键、氢氧共价键的长度和相邻的氧原子的距离(单位: Å), H—O—H键角, 4个振动区域的波数范围(单位: cm–1), 结构优化密度(单位: g/cm–3)

    Table 2.  Length of H-bond, OH covalent bond and distance of adjacent O atoms (in Å), H—O—H bond angle, wavenumber range of four vibration regions of ice phases (in cm–1), structure optimization density (in g/cm–3).

    ICE H···O O—H O—H···O HOH Angle Translation Libration Bending Stretching Density
    Ice X 1.138 1.138 2.275 109.5 3.3
    Ice VIII 2.038 0.976 3.013 105.1 161-254 502-1032 1589-1742 3357-3480 1.42
    Ice XIII 1.786–3.173 0.980–0.987 2.751–2.874 102.7–108.1 50–318 524–982 1629–1721 3198–3441 1.18
    Ice XV 1.902–1.991 0.978–0.981 2.886–2.908 101.6–107.2 73–285 477–936 1609–1709 3278–3485 1.21
    Ice XIV 1.986–1.838 0.978–0.984 2.793–2.951 102.8–105.3 104–292 502–933 1647–1735 3234–3478 1.15
    Ice II 1.815–2.057 0.976–0.986 2.796–3.023 102.8/105.0 142–318 522–969 1659–1723 3193–3483 1.06
    Ice IX 1.829–1.849 0.984/0.985 2.802–2.824 104.2/104.7 67–307 580–1003 1639–1716 3177–3391 1.01
    Ice Ic 1.799 1.000 2.798 105.6 230/321 589–1053 1631–1708 3113–3334 0.89
    Ice XI 1.813/1.814 0.987/0.988 2.799/2.802 105.7/106.0 47–310 586–1063 1634–1710 3110–3353 0.89
    Ice Ih 1.788–1.866 0.986–0.989 2.784–2.843 104.7–106.2 33–327 579–1030 1651–1706 3110–3363 0.88
    XVII 1.806–1.840 0.986–0.988 2.791–2.826 105.0–107.9 36–301 588–1037 1635–1709 3125–3369 0.81
    XVI 1.797–1.845 0.984–0.990 2.768–2.830 105.1–106.3 53–315 594–1053 1649–1715 3117–3380 0.80
    下载: 导出CSV
    Baidu
  • [1]

    邓耿, 尉志武 2016 科学通报 61 3181Google Scholar

    Deng G, Wei Z W 2016 Chin. Sci. Bull. 61 3181Google Scholar

    [2]

    Pauling L 1960 The Nature of Chemical Bond (New York: Cornell University Press) pp449–504

    [3]

    Pople J A 1957 Proc. R. Soc. London, Ser. A 239 550Google Scholar

    [4]

    Claussen W F 1951 J. Chem. Phys. 19 1425Google Scholar

    [5]

    Frank H S, Wen W Y 1957 Discuss. Faraday Soc. 24 133Google Scholar

    [6]

    Symons M C R 1972 Nature 239 257Google Scholar

    [7]

    Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund L A, Hirsch T K, Ojamae L, Glatzel P, Pettersson L G M, Nilsson A 2004 Science 304 995Google Scholar

    [8]

    Smith J D, Cappa C D, Wilson K R, Messer B M, Cohen R C, Saykally R J 2004 Science 306 851Google Scholar

    [9]

    Sun Q 2013 Chem. Phys. Lett. 568 90Google Scholar

    [10]

    Nilsson A, Wernet Ph, Nordlund D, Bergmann U, Cavalleri M 2005 Science 308 793AGoogle Scholar

    [11]

    Smith J D, Cappa C D, Messer B M, Cappa C D 2005 Science 308 793BGoogle Scholar

    [12]

    Tokushima T, Harada Y, Takahashi O, Senba Y, Ohashi H, Pettersson L G M, Nilsson A, Shin S 2008 Chem. Phys. Lett. 460 387Google Scholar

    [13]

    Raichlin Y, Millo A, Katzir A 2004 Phys. Rev. Lett. 93 185703Google Scholar

    [14]

    Russo J, Tanaka H 2014 Nat. Commun. 5 3556Google Scholar

    [15]

    Ktihne T D, Khaliullin R Z 2013 Nat. Commun. 4 1450Google Scholar

    [16]

    Ktihne T D, Khaliullin R Z 2014 J. Am. Chem. Soc. 136 3395Google Scholar

    [17]

    Bertie J E, Whalley E 1967 J. Chem. Phys. 46 1271Google Scholar

    [18]

    Tammann G 1900 Ann. Phys. 307 1Google Scholar

    [19]

    Demontis P, LeSar R, Klein M L 1988 Phys. Rev. Lett. 60 2284Google Scholar

    [20]

    Bertie J E, Calvert L D, Whalley E 1963 J. Chem. Phys. 38 840Google Scholar

    [21]

    Bridgman P W 1912 Proc. Am. Acad. Arts Sci. 47 441Google Scholar

    [22]

    Bridgman P W 1937 J. Chem. Phys. 5 964Google Scholar

    [23]

    Whalley E, Davidson D W 1965 J. Chem. Phys. 43 2148Google Scholar

    [24]

    Whalley E, Davidson D W, Heath J B R 1966 J. Chem. Phys. 45 3976Google Scholar

    [25]

    Kuhs W F, Finney J L, Vettier C, Bliss D V 1984 J. Chem. Phys. 81 3612Google Scholar

    [26]

    Whalley E, Heath J B R, Davidson D W 1968 J. Chem. Phys. 48 2362Google Scholar

    [27]

    Tajima Y, Matsuo T, Suga H 1982 Nature 299 810Google Scholar

    [28]

    Hirsch K R, Holzapfel W B 1986 J. Chem. Phys. 84 2771Google Scholar

    [29]

    Lobban C, Finney J L, Kuhs W F 1998 Nature 391 268Google Scholar

    [30]

    Matsuo T, Tajima Y, Suga H 1986 J. Phys. Chem. Solids 47 165Google Scholar

    [31]

    Salzmann C G, Radaelli P G, Mayer A E, Finney J L 2006 Science 311 1758Google Scholar

    [32]

    Tribello G A, Slater B, Salzmann C G 2006 J. Am. Chem. Soc. 128 12594Google Scholar

    [33]

    Salzmann C G, Radaelli P G, Mayer E, Finney J L 2009 Phys. Rev. Lett. 103 105701Google Scholar

    [34]

    Falenty A, Hansen T C, Kuhs W F 2014 Nature 516 213Google Scholar

    [35]

    del Rosso L, Celli M, Ulivi L 2016 Nat. Commun. 7 13394Google Scholar

    [36]

    Millot M, Hamel S, Rygg J R, Celliers P M, Collins G W, Coppari F, Fratanduono D E, Jeanloz R, Swift D C, Eggert J H 2018 Nat. Phys. 14 297Google Scholar

    [37]

    Millot M, Coppari F, Rygg J R, Barrios A C, Hamel S, Swift D C 2019 Nature 569 251Google Scholar

    [38]

    Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva IV 2015 Nature 519 443Google Scholar

    [39]

    Zhou W, Yin K, Wang C, Zhang Y, Xu T, Borisevich A, Sun L, Idrobo J C, Chisholm M F, Pantelides S T, Klie R F, Lupini A R 2015 Nature 528 E1Google Scholar

    [40]

    Koga K, Zeng X C, Tanaka H 1997 Phys. Rev. Lett. 79 5262Google Scholar

    [41]

    Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G, Jiang Y 2020 Nature 577 60Google Scholar

    [42]

    Kuhs W F, Lehmann M S 1983 J. Phys. Chem. 87 4312Google Scholar

    [43]

    Konig H 1943 Z. Kristallogr. 105 279Google Scholar

    [44]

    Dowell L G, Rinfret A P 1960 Nature 188 1144Google Scholar

    [45]

    Murray B J, Bertram A K 2006 Phys. Chem. Chem. Phys. 8 186Google Scholar

    [46]

    Murray B J 2008 Environ. Res. Lett. 3 025008Google Scholar

    [47]

    Malkin T L, Murray B J, Brukhno A V, Anwar J, Salzmann C G 2012 Proc. Natl. Acad. Sci. U. S. A. 109 1041Google Scholar

    [48]

    Whalley E 1981 Science 211 389Google Scholar

    [49]

    Mayer E, Hallbrucker A 1987 Nature 325 601Google Scholar

    [50]

    Kuhs W F, Bliss D V, Finney J L 1987 J. Phys. Colloq. 48 631Google Scholar

    [51]

    Kuhs W F, Sippel C, Falenty A, Hansen T C 2012 Proc. Natl. Acad. Sci. U. S. A. 109 21259Google Scholar

    [52]

    Murray B, Knopf D, Bertram A 2005 Nature 434 202Google Scholar

    [53]

    Falenty A, Kuhs W F 2009 J. Phys. Chem. B 113 15975Google Scholar

    [54]

    Baker J M, Dore J C, Behrens P 1997 J. Phys. Chem. B 101 6226Google Scholar

    [55]

    Malkin T L, Murray B J, Salzmann C G, Molinero V, Pickering S J, Whale T F 2015 Phys. Chem. Chem. Phys. 17 60Google Scholar

    [56]

    del Rosso L, Celli M, Grazzi F, Catti M, Ulivi L 2020 Nat. Mater. 19 663Google Scholar

    [57]

    Komatsu K, Machida S, Noritake F, Hattori T, Kagi H 2020 Nat. Commun. 11 464Google Scholar

    [58]

    Lekner J 1997 Physica B 240 263Google Scholar

    [59]

    黄盈盈, 苏艳, 赵纪军 2019 高压 33 010001Google Scholar

    Huang Y Y, Su Y, Zhao J J 2019 Chin. J. High Pressure Phys. 33 010001Google Scholar

    [60]

    Bartels-Rausch T, Bergeron V, Csrtwright J H E, Escribano R, Finney J L, Grothe H 2012 Rev. Mod. Phys. 84 885Google Scholar

    [61]

    Moberg D R, Sharp P J, Paesani F 2018 J. Phys. Chem. B 122 10572Google Scholar

    [62]

    Kamb B 1964 Acta Crystallogr. 17 1437Google Scholar

    [63]

    Finch E D 1968 J. Chem. Phys. 49 4361Google Scholar

    [64]

    Kamb B, Hamilton W C, Laplaca S J, Prakash A 1971 J. Chem. Phys. 55 1934Google Scholar

    [65]

    Fortes A D, Wood I G, Brodholt J P, Vočadlo L 2003 J. Chem. Phys. 119 4567Google Scholar

    [66]

    Bauer M, Elsaesser M S, Winkel K, Mayer E, Loerting T 2008 Phys. Rev. B 77 220105Google Scholar

    [67]

    Scheuermann M, Geil B, Löw F, Fujara F 2009 J. Chem. Phys. 130 024506Google Scholar

    [68]

    Bertie J E, Whalley E 1964 J. Chem. Phys. 40 1646Google Scholar

    [69]

    Bertie J E, Labbé H J, Whalley E 1968 J. Chem. Phys. 49 775Google Scholar

    [70]

    Bertie J E, Francis B F 1980 J. Chem. Phys. 72 2213Google Scholar

    [71]

    Bertie J E, Francis B F 1982 J. Chem. Phys. 77 1Google Scholar

    [72]

    Li J C, Londono D, Ross D K, Finney J L, Bennington S M, Taylor A D 1992 J. Phys. Condens. Matter 4 2109Google Scholar

    [73]

    Kamb B 1965 Science 150 205Google Scholar

    [74]

    Kuhs W F, Ahsbahs H, Londono D, Finney J L 1989 Physica B 156 684Google Scholar

    [75]

    Whale T F, Clark S J, Finney J L 2013 J. Raman Spectrosc. 44 290Google Scholar

    [76]

    Komatsu K, Noritake F, Machida S 2016 Sci. Rep. 6 28920Google Scholar

    [77]

    Nanda K D, Beran G J O 2013 J. Phys. Chem. Lett. 4 3165Google Scholar

    [78]

    Gasser T M, Thoeny A, Plaga L 2018 Chem. Sci. 9 4224Google Scholar

    [79]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G 1999 Nature 398 681Google Scholar

    [80]

    Vaks V G, Zinenko V I 1981 Solid State Commun. 39 643Google Scholar

    [81]

    Song M, Yamawaki H, Fujihisa H, Sakashita M, Aoki K 2003 Phys. Rev. B 68 014106Google Scholar

    [82]

    Besson J M, Kobayashi M, Nakai T, Endo S 1997 Phys. Rev. B 55 11191Google Scholar

    [83]

    Pruzan P, Chervin J C, Canny B 1993 J. Chem. Phys. 99 9842Google Scholar

    [84]

    Goncharov A F, Struzhkin V V, Somayazulu M S, Hemley R J, Mao H K 1996 Science 273 218Google Scholar

    [85]

    Aoki K, Yamawaki H, Sakashita M, Fujihisa H 1996 Phys. Rev. B 54 15673Google Scholar

    [86]

    Klug D D, Handa Y P, Tse J S, Whalley E 1989 J. Chem. Phys. 90 2390Google Scholar

    [87]

    Minceva-Sukarova B, Sherman W F, Wilkinson G R 1984 J. Phys. C: Solid State Phys. 17 5833Google Scholar

    [88]

    Li J C, Londono J D, Ross D K, Finney J L, Tomkinson J, Sherman W F 1991 J. Chem. Phys. 94 6770Google Scholar

    [89]

    Garg A K 1988 Phys. Status Solidi A 110 467Google Scholar

    [90]

    Tse J S, Klein M L, McDonald I R 1984 J. Chem. Phys. 81 6124Google Scholar

    [91]

    Holzapfel W B 1972 J. Chem. Phys. 56 712Google Scholar

    [92]

    Polian A, Grimsditch M 1984 Phys. Rev. Lett. 52 1312Google Scholar

    [93]

    Flores-Livas J A, Sanna A, Graužinytė M, Davydov A, Goedecker S, Marques M A L 2017 Sci. Rep. 7 6825Google Scholar

    [94]

    Lu X Z, Zhang Y, Zhao P, Fang S J 2011 J. Phys. Chem. B 115 71Google Scholar

    [95]

    Marqués M, Ackland G, Loveday J 2009 High Pressure Res. 29 208Google Scholar

    [96]

    Putrino A, Parrinello M 2002 Phys. Rev. Lett. 88 176401Google Scholar

    [97]

    Goncharov A F, Struzhkin V V, Mao H K, Hemley R J 1999 Phys. Rev. Lett. 83 1998Google Scholar

    [98]

    Men Z, Fang W, Li D, Li Z, Sun C 2014 Sci. Rep. 4 4606Google Scholar

    [99]

    Giauque W F, Stout J W 1936 J. Am. Chem. Soc. 58 1144Google Scholar

    [100]

    Kawada S 1972 J. Phys. Soc. Jpn. 32 1442Google Scholar

    [101]

    Leadbetter A J, Ward R C 1985 J. Chem. Phys. 82 424Google Scholar

    [102]

    Line C M B, Whitworth R W 1996 J. Chem. Phys. 104 10008Google Scholar

    [103]

    Jackson S M, Nield V M, Whitworth R W, Oguro M, Wilson C C 1997 J. Phys. Chem. B 101 6142Google Scholar

    [104]

    Salzmann C G, Radaelli P G, Finney J L, Mayer E 2008 Phys. Chem. Chem. Phys. 10 6313Google Scholar

    [105]

    Salzmann C G, Hallbrucker A, Finney J L, Mayer E 2006 Phys. Chem. Chem. Phys. 8 3088Google Scholar

    [106]

    Zhang J, Xiao Z, Kuo J 2010 J. Chem. Phys. 132 184506Google Scholar

    [107]

    Tran H, Cunha A V, Shephard J J, Shalit A, Hamm P, Jansen T L C, Salzmann C G 2017 J. Chem. Phys. 147 144501Google Scholar

    [108]

    Salzmann C G, Hallbrucker A, Finney J L, Mayer E 2006 Chem. Phys. Lett. 429 469Google Scholar

    [109]

    Yoshimura Y, Stewart S T, Mao H K, Hemley R J 2007 J. Chem. Phys. 126 174505Google Scholar

    [110]

    Koza M M, Schober H, Tölle A, Fujara F, Hansen T 1999 Nature 397 660Google Scholar

    [111]

    Koza M M, Schober H, Parker S F, Peters J 2008 Phys. Rew. B 77 104306Google Scholar

    [112]

    Huang Y Y, Zhu C Q, Wang L, Cao X X, Su Y, Jiang X, Meng S, Zhao J J, Zeng X C 2016 Sci. Adv. 2 e1501010Google Scholar

    [113]

    Huang Y Y, Zhu C Q, Wang L, Zhao J J and Zeng X C 2017 Chem. Phys. Lett. 671 186Google Scholar

    [114]

    Matsui T, Hirata M, Yagasaki T, Matsumoto M, Tanaka H 2017 J. Chem. Phys. 147 091101Google Scholar

    [115]

    Liu Y, Ojamäe L 2018 Phys. Chem. Chem. Phys. 20 8333Google Scholar

    [116]

    Engel E A, Anelli A, Ceriotti M, Pickard C J, Needs R J 2018 Nat. Commun. 9 2173Google Scholar

    [117]

    Matsui T, Yagasaki T, Matsumoto M, Tanaka H 2019 J. Chem. Phys. 150 041102Google Scholar

    [118]

    del Rosso L, Grazzi F, Celli M, Colognesi D, Garcia-Sakai V, Ulivi L 2016 J. Phys. Chem. C 120 26955Google Scholar

    [119]

    Bertie J E, Labbe H J, Whalley E 1969 J. Chem. Phys. 50 4501Google Scholar

    [120]

    Wong P T T, Whalley E 1976 J. Chem. Phys. 65 829Google Scholar

    [121]

    Rasetti F 1932 Nuovo Cirnento 9 72Google Scholar

    [122]

    Hibben J H 1937 J. Chem. Phys. 5 166Google Scholar

    [123]

    Cross P C, Burnham J, Leighton P A 1937 J. Am. Chem. Soc. 59 1134Google Scholar

    [124]

    Narayanaswarny P K 1948 Proc. Indian Acad. Sci. 27 311Google Scholar

    [125]

    Valkov V I, Maslenkova G L 1956 Opt. Spektrosk. 1 881

    [126]

    Taylor M J, Whalley E 1964 J. Chem. Phys. 40 1660Google Scholar

    [127]

    Marchi M, Tse J S, Klein M L 1986 J. Chem. Phys. 85 2414Google Scholar

    [128]

    Renker B 1973 International Symposium on the Physics and Chemistry of Ice Ottowa, Ont., Canada, August 14–18, 1972 p82

    [129]

    Li J C, Ross D K, Howe L, Hall P G, Tomkinson J 1989 Physica B 156 376Google Scholar

    [130]

    Klug D D, Tse J S, Whalley E 1991 J. Chem. Phys. 95 7011Google Scholar

    [131]

    Li J C 1996 J. Chem. Phys. 105 6733Google Scholar

    [132]

    Li J C, Ross D K 1993 Nature 365 327Google Scholar

    [133]

    Morrison I, Jenkins S 1999 Physica B 263 442Google Scholar

    [134]

    Klotz S, Strässle T, Salzmann C G, Philippe J, Parker S F 2005 Europhys. Lett. 72 576Google Scholar

    [135]

    Zhang P, Tian L, Zhang Z P, Shao G, Li J C 2012 J. Chem. Phys. 137 044504Google Scholar

    [136]

    He X, Sode O, Xantheas S S, Hirata S 2012 J. Chem. Phys. 137 204505Google Scholar

    [137]

    Zhang P, Liu Y, Yu H, Han S H, Lü Y B, Lv M S, Cong W Y 2014 Chin. Phys. B 23 026103Google Scholar

    [138]

    Zhang P, Wang Z, Lü Y B, Ding Z W 2016 Sci. Rep. 6 29273Google Scholar

    [139]

    Yuan Z Y, Zhang P, Yao S K, Lü Y B, Yang H Z, Luo H W, Zhao Z J 2017 RSC Adv. 7 36801Google Scholar

    [140]

    Yao S K, Zhang P, Zhang Y, Lü Y B, Yang T l, Sun B G, Yuan Z Y, Luo H W 2017 RSC Adv. 7 31789Google Scholar

    [141]

    Jiang L, Yao S K, Zhang K, Wang Z R, Luo H W, Zhu X L, Gu Y, Zhang P 2018 Molecules 23 2780Google Scholar

    [142]

    Qin X L, Zhu X L, Cao J W, Jiang L, Gu Y, Wang X C, Zhang P 2019 Molecules 24 3115Google Scholar

    [143]

    Zhao Z J, Qin X L, Cao J W, Zhu X L, Yang Y C, Wang H C, Zhang P 2019 ACS Omega 4 18936Google Scholar

    [144]

    Cao J W, Chen J Y, Qin X L, Zhu X L, Jiang L, Gu Y, Yu X H, Zhang P 2019 Molecules 24 3135Google Scholar

    [145]

    Zhang K, Zhang P, Wang Z R, Zhu X L, Lu Y B, Guan C B, Li Y H 2018 Molecules 23 1781Google Scholar

    [146]

    Gu Y, Zhu X L, Jiang L, Cao J W, Qin X L, Yao S K, Zhang P 2019 J. Phys. Chem. C 123 14880Google Scholar

    [147]

    Zhu X L, Cao J W, Qin X L, Jiang L, Gu Y, Wang H C, Liu Y, Kolesnikov A I, Zhang P 2020 J. Phys. Chem. C 124 1165Google Scholar

    [148]

    Wei Z W, Zhu X L, Cao J W, Qin X L, Jiang L, Gu Y, Wang H C, Zhang P 2019 AIP Adv. 9 115118Google Scholar

    [149]

    Zhu X L, Yuan Z Y, Jiang L, Zhang K, Wang Z R, Luo H W, Gu Y, Cao J W, Qin X L, Zhang P 2019 New J. Phys. 21 043054Google Scholar

    [150]

    Wang Z R, Zhu X L, Jiang L, Zhang K, Luo H W, Gu Y, Zhang P 2019 Materials 12 246Google Scholar

    [151]

    Matsumoto M, Yagasaki T, Tanaka H 2018 J. Comput. Chem. 39 61Google Scholar

    [152]

    Wang H C, Zhu X L, Cao J W, Qin X L, Yang Y C, Niu T X, LüY B, Zhang P 2020 New J. Phys. 22 093066Google Scholar

    [153]

    Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413Google Scholar

    [154]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515Google Scholar

    [155]

    Li J C, Burnham C, Kolesnikov A I, Eccleston R S 1999 Phys. Rev. B 59 9088Google Scholar

    [156]

    Kolesnikov A I, Li J C, Ross D K, et al. 1992 Phys. Lett. A 168 308Google Scholar

  • [1] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系.  , 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [2] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究.  , 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [3] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究.  , 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [5] 闫微, 马淼, 戴泽林, 谷雨, 朱宏钊, 刘禹彤, 许向东, 韩守胜, 彭勇. 全反式-胡萝卜素太赫兹光谱的实验及理论研究.  , 2017, 66(3): 037801. doi: 10.7498/aps.66.037801
    [6] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究.  , 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [7] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [8] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究.  , 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [9] 汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟. 激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响.  , 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [10] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. BaBPO5晶体晶格振动光谱研究与第一性原理计算.  , 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [11] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究.  , 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [12] 杨岳彬, 左文龙, 保延翔, 刘树郁, 李龙飞, 张进修, 熊小敏. 力学共振吸收谱探测耦合振动模式.  , 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [13] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟.  , 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [15] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [16] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [17] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [18] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究.  , 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [19] 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁碳纳米管手性角对声子振动频率的影响.  , 2005, 54(9): 4279-4284. doi: 10.7498/aps.54.4279
    [20] 赵明文, 夏曰源, 马玉臣, 刘向东, 英敏菊. 非迭代冻结密度近似方法在计算氢键相互作用的合理性研究.  , 2002, 51(11): 2440-2445. doi: 10.7498/aps.51.2440
计量
  • 文章访问数:  8480
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 修回日期:  2021-02-26
  • 上网日期:  2021-07-14
  • 刊出日期:  2021-07-20

/

返回文章
返回
Baidu
map