-
Penta-graphene is a new two-dimensional metastable carbon allotrope composed entirely of carbon pentagons with unique electronic and mechanical properties. In this work, molecular dynamics simulations are carried out to investigate the effects of functionalization by hydrogen, epoxide or hydroxyl groups on the mechanical properties and failure mechanism of penta-graphene, as well as the effects of different functionalization coverages. The effects of functionalization on the structural transformation of free-standing penta-graphene triggered by increasing temperature have also been studied. The results indicate that each of the three functional groups considered can effectively tune the mechanical properties and the failure mechanism of penta-graphene. Both the Young's modulus and elastic limit of penta-graphene first decrease sharply and then increase slowly with the increase of the functionalization coverage, while the ultimate elastic strain increases monotonically. Like the pristine penta-graphene, partially functionalized penta-graphene still exhibits a plastic deformation failure behaviour under tensile load, which is caused by the irreversible pentagon-to-polygon structural transformation occurring during tensile loading. Temperature can trigger structural reconstruction for free-standing partially functionalized penta-graphene, and the corresponding critical transition temperature is higher than that of pristine penta-graphene. However, complete functionalization can change the deformation mechanism of penta-graphene from plastic deformation to brittle fracture. For fully functionalized penta-graphene by each of the three functional groups, the structural transformation is not observed when tensile strain is applied or environmental temperature is increased. These findings are expected to provide important guidelines for effectively tuning the mechanical properties of two-dimensional nanomaterials including penta-graphene.
-
Keywords:
- penta-graphene /
- mechanical properties /
- functionalization /
- molecular dynamics
[1] Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2372
Google Scholar
[2] Yu Z G, Zhang Y W 2015 J. Appl. Phys. 118 165706
Google Scholar
[3] Xu W, Zhang G, Li B W 2015 J. Chem. Phys. 143 154703
Google Scholar
[4] Carr L D, Lusk M T 2010 Nat. Nanotechnol. 5 316
Google Scholar
[5] Guo B D, Liu Q A, Chen E D, Zhu H W, Fang L A, Gong J R 2010 Nano Lett. 10 4975
Google Scholar
[6] Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326
Google Scholar
[7] Han T W, Luo Y, Wang C Y 2015 Acta Mech. Solida Sin. 28 618
Google Scholar
[8] Berdiyorov G R, Dixit G, Madjet M E 2016 J. Phys.: Condens. Matter 28 475001
Google Scholar
[9] Li X Y, Zhang S H, Wang F Q, Guo Y G, Liu J, Wang Q 2016 Phys. Chem. Chem. Phys. 18 14191
Google Scholar
[10] Zhang Y Y, Pei Q X, Cheng Y, Zhang Y W, Zhang X L 2017 Comput. Mater. Sci. 137 195
Google Scholar
[11] Wu X F, Varshney V, Lee J, Zhang T, Wohlwend J L, Roy A K, Luo T F 2016 Nano Lett. 16 3925
Google Scholar
[12] Zhang Y Y, Pei Q X, Sha Z D, Zhang Y W, Gao H J 2017 Nano Res. 10 3865
Google Scholar
[13] Liu L Z, Zhang J F, Zhao J J, Liu F 2012 Nanoscale 4 5910
Google Scholar
[14] Suk J W, Piner R D, An J, Ruoff R S 2010 ACS Nano 4 6557
Google Scholar
[15] Pei Q X, Zhang Y W, Shenoy V B 2010 Carbon 48 898
Google Scholar
[16] Winczewski S, Shaheen M Y, Rybicki J 2018 Carbon 126 165
Google Scholar
[17] Erhart P, Albe K 2005 Phys. Rev. B 71 035211
Google Scholar
[18] Rahaman O, Mortazavi B, Dianat A, Cuniberti G, Rabczuk T 2017 FlatChem 1 65
Google Scholar
[19] Han T W, Cao S M, Wang X Y, Xuezi Y Y, Zhang X Y 2019 Mater. Res. Express 6 085612
Google Scholar
[20] Cranford S W 2016 Carbon 96 421
Google Scholar
[21] Han T W, Wang X Y, Zhang X Y, Scarpa F, Tang C 2021 Nanotechnology 32 275706
Google Scholar
[22] van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396
Google Scholar
[23] Chenoweth K, van Duin A C T, Goddard W A 2008 J. Phys. Chem. A 112 1040
Google Scholar
[24] Le M Q 2017 Comput. Mater. Sci. 136 181
Google Scholar
[25] Chen M, Zhan H, Zhu Y, Wu H, Gu Y 2017 J. Phys. Chem. C 121 9642
Google Scholar
[26] Yoon K, Ostadhossein A, van Duin A C T 2016 Carbon 99 58
Google Scholar
[27] Hoover W G 1985 Phys. Rev. A 31 1695
Google Scholar
[28] Nose S 1984 Mol. Phys. 52 255
Google Scholar
[29] Swope W C, ersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637
Google Scholar
[30] Subramaniyan A K, Sun C T 2008 Int. J. Solids Struct. 45 4340
Google Scholar
[31] Zhao Y P 2014 Nano, Mesoscopic Mechanics (Beijing: Science Press) p 14
[32] Yagmurcukardes M, Sahin H, Kang J, Torun E, Peeters F M, Senger R T 2015 J. Appl. Phys. 118 104303
Google Scholar
[33] Los J H, Zakharchenko K V, Katsnelson M I, Fasolino A 2015 Phys. Rev. B 91 045415
Google Scholar
-
图 1 五边形石墨烯及其官能化几何模型示意图 (a) 五边形石墨烯薄膜的拉伸模型; (b) 完美五边形石墨烯的2×2超晶胞; (c)完全氢化五边形石墨烯的2×2超晶胞; (d)完全环氧基化五边形石墨烯的2×2超晶胞; (e)完全羟基化五边形石墨烯的2×2超晶胞
Figure 1. Schematics of simulation models and atomic structures for pristine and functionalized penta-graphene. Side view and top view of (a) tensile model of pristine penta-graphene sheet, 2×2 supercell of (b) pristine penta-graphene, (c) fully hydrogenated penta-graphene, (d) fully epoxylated penta-graphene, (f) fully hydroxylated graphene.
-
[1] Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2372
Google Scholar
[2] Yu Z G, Zhang Y W 2015 J. Appl. Phys. 118 165706
Google Scholar
[3] Xu W, Zhang G, Li B W 2015 J. Chem. Phys. 143 154703
Google Scholar
[4] Carr L D, Lusk M T 2010 Nat. Nanotechnol. 5 316
Google Scholar
[5] Guo B D, Liu Q A, Chen E D, Zhu H W, Fang L A, Gong J R 2010 Nano Lett. 10 4975
Google Scholar
[6] Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326
Google Scholar
[7] Han T W, Luo Y, Wang C Y 2015 Acta Mech. Solida Sin. 28 618
Google Scholar
[8] Berdiyorov G R, Dixit G, Madjet M E 2016 J. Phys.: Condens. Matter 28 475001
Google Scholar
[9] Li X Y, Zhang S H, Wang F Q, Guo Y G, Liu J, Wang Q 2016 Phys. Chem. Chem. Phys. 18 14191
Google Scholar
[10] Zhang Y Y, Pei Q X, Cheng Y, Zhang Y W, Zhang X L 2017 Comput. Mater. Sci. 137 195
Google Scholar
[11] Wu X F, Varshney V, Lee J, Zhang T, Wohlwend J L, Roy A K, Luo T F 2016 Nano Lett. 16 3925
Google Scholar
[12] Zhang Y Y, Pei Q X, Sha Z D, Zhang Y W, Gao H J 2017 Nano Res. 10 3865
Google Scholar
[13] Liu L Z, Zhang J F, Zhao J J, Liu F 2012 Nanoscale 4 5910
Google Scholar
[14] Suk J W, Piner R D, An J, Ruoff R S 2010 ACS Nano 4 6557
Google Scholar
[15] Pei Q X, Zhang Y W, Shenoy V B 2010 Carbon 48 898
Google Scholar
[16] Winczewski S, Shaheen M Y, Rybicki J 2018 Carbon 126 165
Google Scholar
[17] Erhart P, Albe K 2005 Phys. Rev. B 71 035211
Google Scholar
[18] Rahaman O, Mortazavi B, Dianat A, Cuniberti G, Rabczuk T 2017 FlatChem 1 65
Google Scholar
[19] Han T W, Cao S M, Wang X Y, Xuezi Y Y, Zhang X Y 2019 Mater. Res. Express 6 085612
Google Scholar
[20] Cranford S W 2016 Carbon 96 421
Google Scholar
[21] Han T W, Wang X Y, Zhang X Y, Scarpa F, Tang C 2021 Nanotechnology 32 275706
Google Scholar
[22] van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396
Google Scholar
[23] Chenoweth K, van Duin A C T, Goddard W A 2008 J. Phys. Chem. A 112 1040
Google Scholar
[24] Le M Q 2017 Comput. Mater. Sci. 136 181
Google Scholar
[25] Chen M, Zhan H, Zhu Y, Wu H, Gu Y 2017 J. Phys. Chem. C 121 9642
Google Scholar
[26] Yoon K, Ostadhossein A, van Duin A C T 2016 Carbon 99 58
Google Scholar
[27] Hoover W G 1985 Phys. Rev. A 31 1695
Google Scholar
[28] Nose S 1984 Mol. Phys. 52 255
Google Scholar
[29] Swope W C, ersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637
Google Scholar
[30] Subramaniyan A K, Sun C T 2008 Int. J. Solids Struct. 45 4340
Google Scholar
[31] Zhao Y P 2014 Nano, Mesoscopic Mechanics (Beijing: Science Press) p 14
[32] Yagmurcukardes M, Sahin H, Kang J, Torun E, Peeters F M, Senger R T 2015 J. Appl. Phys. 118 104303
Google Scholar
[33] Los J H, Zakharchenko K V, Katsnelson M I, Fasolino A 2015 Phys. Rev. B 91 045415
Google Scholar
Catalog
Metrics
- Abstract views: 5961
- PDF Downloads: 100
- Cited By: 0