-
为研究合金薄膜非晶化后力学性能持续提高的原因,通过双靶磁控共溅射方法制备了一系列不同Zr含量的Al-Zr合金薄膜,采用EDS,XRD,TEM 和纳米力学探针表征了薄膜的微结构和力学性能. 结果表明:在溅射粒子高分散性和薄膜生长非平衡性的共同作用下,较低Zr 含量的薄膜形成超过饱和固溶体,剧烈的晶格畸变使薄膜的晶粒纳米化,其硬度相应迅速提高. 随Zr含量的进一步增加薄膜形成非晶结构,非晶薄膜的硬度因Al-Zr键数量的增加持续提高,并在含33.3 at.%Zr达到9.8 GPa后增幅减缓. 研究结果揭示了非晶薄膜中Al-Zr键对薄膜力学性能的显著作用.In order to reveal the reason why mechanical properties of alloy films increase continuously after amorphizing, a series of Al-Zr alloy films with different Zr contents are prepared by magnetron co-sputtering of Al and Zr targets. The microstructure and mechanical properties of the films are characterized through a number of techniques, including X-ray energy dispersive spectroscopy, X-ray diffraction, transmission electron microscopy, and nanoindentation. Results show that the films with low Zr content form highly supersaturated solid solutions due to high dispersibility of vapor particles and non-equilibrium growth of the film in co-sputtering process. The film grains are refined to nanoscale particles due to dramatic lattice distortion and the film hardness increases rapidly. As Zr content increases, the film hardness increases continuously because of the increase of Al-Zr chemical bonds after amorphizing, and reaches a high value of 9.8 GPa at 33.3 at.% Zr. The research results reveal the effect of the Al-Zr chemical bonds on mechanical properties in amorphous films
[1] Rupert T J, Trenkle J C, Schuh C A 2011 Acta Materialia 59 1619
[2] Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 036801 (in Chinese)[杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬 2013 62 036801]
[3] Botcharova E, Heilmaier M, Freudenberger J, Drew G, Kudashow D, Martin U, Schultz L 2003 Journal of Alloys and Compounds 351 119
[4] Tsuda T, Hussey C L, Stafford G R, Kongstein O 2004 Journal of The Electrochemical Society 151 C447
[5] Sanchette F, Billard A 2001 Surf Coat Technol. 142 218
[6] Perez A, Sanchette F, Billard A, Rébéré, Berziou C, Touzain S, Creus J 2012 Mater Chem Phys 132 154
[7] Sanchette F, Tran Huu Loi, Billard A, Frantz C 1995 Surf Coat. Technol 74-75 903
[8] Lee Z, Ophus C, Fischer L M, Nelson-Fitzpatrick N, Westra K L, Evoy S, Radmilovic V, Dahmen U, Mitlin D 2006 Nanotechnology 17 3063
[9] Stubicar M, Tonejc A, Radic N 2001 Vacuum 61 309
[10] Debili M Y, Loï T H, Frantz C 1998 La revue de Metallurgie-CIT Science et Géenie des Matériaux 1501
[11] Boukhris N, Lallouche S, Debilia M Y, Draissia M 2009 Eur Phys J App Phys. 45 30501
[12] Draissia M Debill M Y 2005 Philosophical Magazine Letters 85 439
[13] Draissia M, Boudemagh H and Debili M Y 2004 Physica Scripta 69 348
[14] Naka M, Shibayanagi T, Maeda M, Zhao S, Mori H 2000 Vacuum. 59 252
[15] Almtoft P K, Ejsing M A, Bøttiger J, Chevallier J 2007 J. Mater. Res. 22 1018
[16] Silva M, Wille C, Klement U, Choi P, Al-Kassab T 2007 Mater Sci Eng A. 445 31
[17] Liu F 2005 Appl. Phys. A. 81 1095
[18] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H 2002 Nature Materials 1 45
[19] Leyson G P M, Curtin W A, Hector Jr L G, Woodward C F 2010 Nature Materials 9 750
[20] Legros M, Gianola D S, Hemker K J 2008 Acta Materialia 56 3380
[21] Rupert T J, Gianola D S, Gan Y, Hemker K J 2009 Science 326 1686
[22] Dao M, Lu L, Asaro R J, De Hosson J T M, Ma E 2007 Acta Materialia 55 4041
-
[1] Rupert T J, Trenkle J C, Schuh C A 2011 Acta Materialia 59 1619
[2] Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 036801 (in Chinese)[杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬 2013 62 036801]
[3] Botcharova E, Heilmaier M, Freudenberger J, Drew G, Kudashow D, Martin U, Schultz L 2003 Journal of Alloys and Compounds 351 119
[4] Tsuda T, Hussey C L, Stafford G R, Kongstein O 2004 Journal of The Electrochemical Society 151 C447
[5] Sanchette F, Billard A 2001 Surf Coat Technol. 142 218
[6] Perez A, Sanchette F, Billard A, Rébéré, Berziou C, Touzain S, Creus J 2012 Mater Chem Phys 132 154
[7] Sanchette F, Tran Huu Loi, Billard A, Frantz C 1995 Surf Coat. Technol 74-75 903
[8] Lee Z, Ophus C, Fischer L M, Nelson-Fitzpatrick N, Westra K L, Evoy S, Radmilovic V, Dahmen U, Mitlin D 2006 Nanotechnology 17 3063
[9] Stubicar M, Tonejc A, Radic N 2001 Vacuum 61 309
[10] Debili M Y, Loï T H, Frantz C 1998 La revue de Metallurgie-CIT Science et Géenie des Matériaux 1501
[11] Boukhris N, Lallouche S, Debilia M Y, Draissia M 2009 Eur Phys J App Phys. 45 30501
[12] Draissia M Debill M Y 2005 Philosophical Magazine Letters 85 439
[13] Draissia M, Boudemagh H and Debili M Y 2004 Physica Scripta 69 348
[14] Naka M, Shibayanagi T, Maeda M, Zhao S, Mori H 2000 Vacuum. 59 252
[15] Almtoft P K, Ejsing M A, Bøttiger J, Chevallier J 2007 J. Mater. Res. 22 1018
[16] Silva M, Wille C, Klement U, Choi P, Al-Kassab T 2007 Mater Sci Eng A. 445 31
[17] Liu F 2005 Appl. Phys. A. 81 1095
[18] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H 2002 Nature Materials 1 45
[19] Leyson G P M, Curtin W A, Hector Jr L G, Woodward C F 2010 Nature Materials 9 750
[20] Legros M, Gianola D S, Hemker K J 2008 Acta Materialia 56 3380
[21] Rupert T J, Gianola D S, Gan Y, Hemker K J 2009 Science 326 1686
[22] Dao M, Lu L, Asaro R J, De Hosson J T M, Ma E 2007 Acta Materialia 55 4041
计量
- 文章访问数: 6795
- PDF下载量: 609
- 被引次数: 0