Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of twisting deformation on electronic structure and optical properties of gold-doped black phosphorene

He Jian-Lin Liu Gui-Li Li Xin-Yue

Citation:

Effect of twisting deformation on electronic structure and optical properties of gold-doped black phosphorene

He Jian-Lin, Liu Gui-Li, Li Xin-Yue
PDF
HTML
Get Citation
  • The first-principles method based on density functional theory is used to study the effect of torsion deformation on the electronic structure and optical properties of gold-doped black phosphorene. The results show that the electronic structure of the gold-doped black phosphorene system is more sensitive to torsion deformation than that of the intrinsic black phosphorene system under torsion. The analysis of the energy band structure indicates that intrinsic black phosphorene is a direct band gap semiconductor. After being doped with gold, it can realize its transformation from semiconductor into metal. After the gold-doped black phosphorene system is twisted by 1°, the band gap is opened and becomes an indirect band gap semiconductor. As the torsion angle increases, the band gap of the intrinsic black phosphorene system increases slowly, while the band gap of the gold-doped black phosphorene system first decreases, then increases, and then decreases. From the analysis of the density of states, it is found that when the torsion angle changes from 0° to 5°, the intrinsic black phosphorene system has a strong sp orbital hybridization. The s orbit and p orbit contribute to the conduction band and the valence band, but the p orbit is better than the s orbit. The contribution to the total density of states is more, and the s orbital, p orbital and d orbital of the gold-doped black phosphorene system all contribute to the total density of states. From the analysis of optical properties, it is found that compared with the intrinsic black phosphorene system with a torsion angle of 0°, the intrinsic black phosphorene twisted system exhibits a blue shift at the absorption peak and reflection peak, and the gold-doped black phosphorene twisted system exhibits a blue shift in both absorption peak and reflection peak. Both the absorption peak and the reflection peak are red-shifted.
      Corresponding author: Liu Gui-Li, lgl63@sina.cn
    • Funds: Project supported by Liaoning Provincial Department of Education Project, China (Grant No. LZGD2019003).
    [1]

    黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根 2021 70 027802

    Huang S Y, Zhang G W, Wang F J, Lei Y C, Yan H G 2021 Acta Phys. Sin. 70 027802

    [2]

    Lin S, Li Y, Qian J, Lau S P 2019 Mater. Today Energy 12 1Google Scholar

    [3]

    Ma T, Huang H, Guo W, Zhang C, Chen Z, Li S, Ma L, Deng Y 2020 J. Biomed. Nanotechnol. 16 1045Google Scholar

    [4]

    Li Y Y, Gao B, Han Y, Chen B K, Huo J Y 2021 Front. Phys. 16 43301Google Scholar

    [5]

    Vitiello M S, Viti L 2016 Rivista Del Nuovo Cimento 39 371

    [6]

    Wang Y, He M, Ma S, Yang C, Yu M, Yin G, Zuo P 2020 J. Phys. Chem. Lett. 11 2708Google Scholar

    [7]

    王聪, 刘杰, 张晗 2019 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [8]

    He L D, Lian P C, Zhu Y Z, Zhao J P, Mei Y 2021 Chin. J. Chem. 39 690Google Scholar

    [9]

    Jalaei S, Karamdel J, Ghalami-Bavil-Olyaee H 2020 Phys. Status Solidi A 217 2000483Google Scholar

    [10]

    Feng Y, Sun H, Sun J, Lu Z, You Y 2018 J. Phys. Condens. Matter 30 015601

    [11]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [12]

    张倩, 金鑫鑫, 张梦, 郑铮 2020 69 188101Google Scholar

    Zhang Q, Jin X X, Zhang M, Zheng Z 2020 Acta Phys. Sin. 69 188101Google Scholar

    [13]

    Chaves A, Azadani J G, Alsalman H, da Costa D R, Frisenda R, Chaves A J, Song S H, Kim Y D, He D, Zhou J, Castellanos-Gomez A, Peeters F M, Liu Z, Hinkle C L, Oh S H, Ye P D, Koester S J, Lee Y H, Avouris P, Wang X, Low T 2020 NPJ 2 D Mater. Appl. 4 29Google Scholar

    [14]

    Li C, Tian Z 2017 Nanoscale Microscale Thermophys. Eng. 21 45Google Scholar

    [15]

    Batista J S, Churchill H O H, El-Shenawee M 2021 J. Opt. Soc. Am. B: Opt. Phys. 38 1367

    [16]

    Na J, Park K, Kim J T, Choi W K, Song Y W 2017 Nanotechnology 28 085201Google Scholar

    [17]

    Lan S, Rodrigues S, Kang L, Cai W 2016 ACS Photonics 3 1176Google Scholar

    [18]

    Xia F, Wang H, Hwang J C M, Neto A H C, Yang L 2019 Nat. Rev. Phys. 1 306Google Scholar

    [19]

    Mu G Y, Liu G L, Zhang G Y 2020 Int. J. Mod. Phys. B 34 2092003Google Scholar

    [20]

    Wang J X, Wang Y, Liu G L, Wei L, Zhang G Y 2020 Physica B 578 411755Google Scholar

    [21]

    Carmel S, Subramanian S, Rathinam R, Bhattacharyya A 2020 J. Appl. Phys. 127 094303Google Scholar

    [22]

    Koenig S P, Doganov R A, Seixas L, Carvalho A, Tan J Y, Watanabe K, Taniguchi T, Yakovlev N, Castro Neto A H, Ozyilmaz B 2016 Nano Lett. 16 2145Google Scholar

    [23]

    Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P, Halas N J 2012 ACS Nano 6 10222Google Scholar

    [24]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar

    [25]

    Stockman M I 2010 Nature 467 541Google Scholar

    [26]

    Kutlu E, Narin P, Lisesivdin S B, Ozbay E 2018 Philos. Mag. 98 155Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891

    [28]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [29]

    Cakir D, Sahin H, Peeters F M 2014 Phys. Rev. B 90 205421Google Scholar

    [30]

    杜燕兰 2010 硕士学位论文 (南昌: 江西师范大学)

    Du Y L 2010 M. S. Thesis (Nanchang: Jiangxi Normal University)

    [31]

    Wu Z F, Gao P F, Guo L, Kang J, Fang D Q, Zhang Y, Xia M G, Zhang S L, Wen Y H 2017 Phys. Chem. Chem. Phys. 19 31796Google Scholar

  • 图 1  黑磷烯模型 (a) 本征黑磷烯俯视图; (b) 本征黑磷烯侧视图; (c) 掺金黑磷烯俯视图; (d) 掺金黑磷烯侧视图

    Figure 1.  Black phosphorene model: (a) Top view of undoped black phosphorene; (b) side view of undoped black phosphorene; (c) top view of gold-doped black phosphorene; (d) side view of gold-doped black phosphorene.

    图 2  带有θ扭转角的黑磷结构 (a) 俯视图; (b)主视图

    Figure 2.  Black phosphorous structure with θ torsion angle: (a) Top view; (b) front view.

    图 3  电子结构 (a) 本征黑磷烯能带图和态密度; (b) 掺金黑磷烯能带图和态密度

    Figure 3.  Electronic structure: (a) Intrinsic black phosphorous band diagram and density of states; (b) gold-doped black phosphorous band diagram and density of states.

    图 4  (a)−(e)本征黑磷烯在扭转角为1°, 2°, 3°, 4°和5°下的能带图和态密度; (f)−(j)掺金黑磷烯在扭转角为1°, 2°, 3°, 4°和5°下的能带图和态密度

    Figure 4.  (a)−(e) The energy band diagram and density of states of intrinsic black phosphorene at twist angles of 1°, 2°, 3°, 4° and 5°; (f)−(j) gold-doped black phosphorene at twist angles are Band diagram and density of states at 1°, 2°, 3°, 4° and 5°.

    图 5  本征黑磷烯和掺金黑磷的能带随扭转角的变化

    Figure 5.  The energy bands of black phosphorene and gold-doped black phosphorene change with twist angle.

    图 6  (a), (d) 本征黑磷烯和掺金黑磷烯在扭转角为0°, 1°, 2°, 3°, 4°和5°下的吸收系数和反射率; (b), (c) 图(a)的放大视图; (e), (f) 图(d)的放大视图

    Figure 6.  (a), (d) The absorption coefficient and reflectivity of intrinsic black phosphorene and gold-doped black phosphorene at twist angles of 0°, 1°, 2°, 3°, 4° and 5°; (b), (c) magnified view of Figure (a); (e), (f) magnified views of Figure (d).

    表 1  本征黑磷烯体系和掺金黑磷烯体系在不同扭转角度下的结合能

    Table 1.  Binding energy of intrinsic black phosphorene system and gold-doped black phosphorene system under different torsion angles.

    扭转角
    结合能
    本征黑磷
    烯/eV
    –191.18–190.97–190.31–189.10–187.17 –184.27
    掺金黑磷
    烯/eV
    –185.78–185.58–184.92–183.73–181.83–178.96
    DownLoad: CSV

    表 2  本征黑磷烯体系和掺金黑磷烯体系在不同扭转角度下的带隙值

    Table 2.  Band gap values of intrinsic black phosphorene system and gold-doped black phosphorene system under different twist angles.

    扭转角
    带隙
    本征黑磷烯/eV0.8990.9050.9080.9110.9140.918
    掺金黑磷烯/eV0.7580.7530.7620.7030.534
    DownLoad: CSV
    Baidu
  • [1]

    黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根 2021 70 027802

    Huang S Y, Zhang G W, Wang F J, Lei Y C, Yan H G 2021 Acta Phys. Sin. 70 027802

    [2]

    Lin S, Li Y, Qian J, Lau S P 2019 Mater. Today Energy 12 1Google Scholar

    [3]

    Ma T, Huang H, Guo W, Zhang C, Chen Z, Li S, Ma L, Deng Y 2020 J. Biomed. Nanotechnol. 16 1045Google Scholar

    [4]

    Li Y Y, Gao B, Han Y, Chen B K, Huo J Y 2021 Front. Phys. 16 43301Google Scholar

    [5]

    Vitiello M S, Viti L 2016 Rivista Del Nuovo Cimento 39 371

    [6]

    Wang Y, He M, Ma S, Yang C, Yu M, Yin G, Zuo P 2020 J. Phys. Chem. Lett. 11 2708Google Scholar

    [7]

    王聪, 刘杰, 张晗 2019 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [8]

    He L D, Lian P C, Zhu Y Z, Zhao J P, Mei Y 2021 Chin. J. Chem. 39 690Google Scholar

    [9]

    Jalaei S, Karamdel J, Ghalami-Bavil-Olyaee H 2020 Phys. Status Solidi A 217 2000483Google Scholar

    [10]

    Feng Y, Sun H, Sun J, Lu Z, You Y 2018 J. Phys. Condens. Matter 30 015601

    [11]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [12]

    张倩, 金鑫鑫, 张梦, 郑铮 2020 69 188101Google Scholar

    Zhang Q, Jin X X, Zhang M, Zheng Z 2020 Acta Phys. Sin. 69 188101Google Scholar

    [13]

    Chaves A, Azadani J G, Alsalman H, da Costa D R, Frisenda R, Chaves A J, Song S H, Kim Y D, He D, Zhou J, Castellanos-Gomez A, Peeters F M, Liu Z, Hinkle C L, Oh S H, Ye P D, Koester S J, Lee Y H, Avouris P, Wang X, Low T 2020 NPJ 2 D Mater. Appl. 4 29Google Scholar

    [14]

    Li C, Tian Z 2017 Nanoscale Microscale Thermophys. Eng. 21 45Google Scholar

    [15]

    Batista J S, Churchill H O H, El-Shenawee M 2021 J. Opt. Soc. Am. B: Opt. Phys. 38 1367

    [16]

    Na J, Park K, Kim J T, Choi W K, Song Y W 2017 Nanotechnology 28 085201Google Scholar

    [17]

    Lan S, Rodrigues S, Kang L, Cai W 2016 ACS Photonics 3 1176Google Scholar

    [18]

    Xia F, Wang H, Hwang J C M, Neto A H C, Yang L 2019 Nat. Rev. Phys. 1 306Google Scholar

    [19]

    Mu G Y, Liu G L, Zhang G Y 2020 Int. J. Mod. Phys. B 34 2092003Google Scholar

    [20]

    Wang J X, Wang Y, Liu G L, Wei L, Zhang G Y 2020 Physica B 578 411755Google Scholar

    [21]

    Carmel S, Subramanian S, Rathinam R, Bhattacharyya A 2020 J. Appl. Phys. 127 094303Google Scholar

    [22]

    Koenig S P, Doganov R A, Seixas L, Carvalho A, Tan J Y, Watanabe K, Taniguchi T, Yakovlev N, Castro Neto A H, Ozyilmaz B 2016 Nano Lett. 16 2145Google Scholar

    [23]

    Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P, Halas N J 2012 ACS Nano 6 10222Google Scholar

    [24]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar

    [25]

    Stockman M I 2010 Nature 467 541Google Scholar

    [26]

    Kutlu E, Narin P, Lisesivdin S B, Ozbay E 2018 Philos. Mag. 98 155Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891

    [28]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [29]

    Cakir D, Sahin H, Peeters F M 2014 Phys. Rev. B 90 205421Google Scholar

    [30]

    杜燕兰 2010 硕士学位论文 (南昌: 江西师范大学)

    Du Y L 2010 M. S. Thesis (Nanchang: Jiangxi Normal University)

    [31]

    Wu Z F, Gao P F, Guo L, Kang J, Fang D Q, Zhang Y, Xia M G, Zhang S L, Wen Y H 2017 Phys. Chem. Chem. Phys. 19 31796Google Scholar

  • [1] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [2] Pan Feng-Chun, Lin Xue-Ling, Cao Zhi-Jie, Li Xiao-Fu. Electronic structures and optical properties of Fe, Co, and Ni doped GaSb. Acta Physica Sinica, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [3] Du Cheng-Xu, Wang Ting, Du Ying-Yan, Jia Qian, Cui Yu-Ting, Hu Ai-Yuan, Xiong Yuan-Qiang, Wu Zhi-Min. Photoelectric properties of Ag and Cr co-doped LiZnP new diluted magnetic semiconductors. Acta Physica Sinica, 2018, 67(18): 187101. doi: 10.7498/aps.67.20180450
    [4] Fan Da-Zhi, Liu Gui-Li, Wei Lin. Electron-theoretical study on the influences of torsional deformation on electrical and optical properties of O atom absorbed graphene. Acta Physica Sinica, 2017, 66(24): 246301. doi: 10.7498/aps.66.246301
    [5] Hu Yong-Jin, Wu Yun-Pei, Liu Guo-Ying, Luo Shi-Jun, He Kai-Hua. Structural phase transition, electronic structures and optical properties of ZnTe. Acta Physica Sinica, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [6] Wu Qiong, Liu Jun, Dong Qian-Min, Liu Yang, Liang Pei, Shu Hai-Bo. Quantum confinement effect on electronic and optical properties of SnS. Acta Physica Sinica, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [7] Li Jian-Hua, Cui Yuan-Shun, Zeng Xiang-Hua, Chen Gui-Bin. Investigations of structural phase transition, electronic structures and optical properties in ZnS. Acta Physica Sinica, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [8] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [9] Pan Lei, Lu Tie-Cheng, Su Rui, Wang Yue-Zhong, Qi Jian-Qi, Fu Jia, Zhang Yi, He Duan-Wei. Study of electronic structure and optical propertise of -AlON crystal. Acta Physica Sinica, 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [10] Wang Hong-Yan, Zhang Zhi-Dong, Zhang Zhong-Yue, Sun Zhong-Hua. Optical properties of gold nanoring structures. Acta Physica Sinica, 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [11] Jiao Zhao-Yong, Yang Ji-Fei, Zhang Xian-Zhou, Ma Shu-Hong, Guo Yong-Liang. Theoretical investigation of elastic, electronic, and optical properties of zinc-blende structure GaN under high pressure. Acta Physica Sinica, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [12] Li Jian-Hua, Zeng Xiang-Hua, Ji Zheng-Hua, Hu Yi-Pei, Chen Bao, Fan Yu-Pei. Electronic structure and optical properties of Ag-doping and Zn vacancy impurities in ZnS. Acta Physica Sinica, 2011, 60(5): 057101. doi: 10.7498/aps.60.057101
    [13] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [14] Li Xu-Zhen, Xie Quan, Chen Qian, Zhao Feng-Juan, Cui Dong-Meng. The study on the electronic structure and optical properties of OsSi2. Acta Physica Sinica, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [15] Zhang Xue-Jun, Gao Pan, Liu Qing-Ju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [16] Guo Jian-Yun, Zheng Guang, He Kai-Hua, Chen Jing-Zhong. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [17] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [18] Xing Hai-Ying, Fan Guang-Han, Zhao De-Gang, He Miao, Zhang Yong, Zhou Tian-Ming. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] Ding Ying-Chun, Xiang An-Ping, Xu Ming, Zhu Wen-Jun. Electrical structures and optical properties of doped earth element (Y,La) in γ-Si3N4. Acta Physica Sinica, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [20] Pan Hong-Zhe, Xu Ming, Zhu Wen-Jun, Zhou Hai-Ping. First-principles study on the electrical structures and optical properties of β-Si3N4. Acta Physica Sinica, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
Metrics
  • Abstract views:  4878
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2021
  • Accepted Date:  29 May 2021
  • Available Online:  15 August 2021
  • Published Online:  20 November 2021

/

返回文章
返回
Baidu
map