搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火温度调控多层折叠石墨烯力学性能的分子动力学模拟

李兴欣 李四平

引用本文:
Citation:

退火温度调控多层折叠石墨烯力学性能的分子动力学模拟

李兴欣, 李四平

Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study

Li Xing-Xin, Li Si-Ping
PDF
HTML
导出引用
  • 退火是石墨烯宏观组装材料常用的制备工艺之一, 广泛用于其性能的调控. 在石墨烯基材料中, 石墨烯片层由于其自身的二维特性通常在微纳米尺度下呈现出多层折叠的结构. 然而这种微观结构对材料力学性能退火调控的影响仍未得到充分的了解. 为了阐明多层折叠石墨烯力学性能与退火温度间的调控关系, 基于分子动力学模拟研究了材料弹性模量、拉伸强度、极限应变以及断裂韧性等关键力学性能参数随退火温度的变化规律, 进而结合观察微观结构的演化过程揭示了性能调控现象的物理机制. 结果表明: 更高的退火温度将增强多层折叠石墨烯的弹性模量与拉伸强度, 但同时削弱了其极限应变, 并且其断裂韧性能够在一定退火温度范围内实现强化. 研究发现, 以上力学性能的调控作用归因于更高的退火温度将造成更加密集的层间交联, 从而增强了折叠区域层间界面的相互作用, 并限制了折叠结构的形态展开, 致使结构破坏模式发生转变.
    Annealing is a commonly used fabrication technology of graphene-assembled materials, which serves as an efficient method to control material properties. In graphene-assembled materials, the multilayer folded configuration of graphene has been widely observed due to the two dimensional characteristic of graphene. However, the manipulation on the mechanical properties of graphene-assembled materials by annealing has not been fully understood yet, especially considering the effect of folded microstructures. In this paper, we focus on the effect of annealing temperature on the mechanical properties of multilayer folded graphene. The dependences of elastic modulus, tensile strength, ultimate strain and fracture toughness on the annealing temperature have been systematically studied by molecular dynamics simulations. Moreover, the mechanisms behind the manipulations by annealing temperature have been revealed combining the structural evolutions obtained from the simulations. Our results indicate that the multilayer folded graphene after annealing under higher temperature exhibits significant reinforcement on its elastic modulus and tensile strength, while its ultimate strain drops instead. The fracture toughness is enhanced only within a certain range of annealing temperature. The controllable mechanical properties are attributed to the formation of interlayer covalent bonds between carbon atoms belonging to adjacent layers during the annealing processing. With the annealing temperature increases, more interlayer crosslinks are observed from simulations, which greatly strengthens the interlayer interaction. For the cases with lower annealing temperature, the folded graphene can be unfolded easily then finally flattened under tensile stretch, and the structural failure originates from the interlayer slippage in the folded area. However, for the cases with higher annealing temperature, the unfolding deformation is prevented since the folded graphene is blocked by much denser interlayer crosslinks, and the origins of structural failure transforms to the intralayer fracture in graphene plane. Considering the intralayer covalent bond interaction is far more powerful than the interlayer van der Waals interaction, the higher annealing temperature will bring higher elastic modulus and tensile strength due to the change on the structural failure mode, but it will sacrifice the ductility at the same time due to the blocked unfolding process of folded area. It is confirmed in our study that the annealing is an effective approach for the synthetic modulation on the stiffness, strength, ductility and toughness of multilayer folded graphene.
      通信作者: 李四平, lisp@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51878407)资助的课题
      Corresponding author: Li Si-Ping, lisp@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51878407)
    [1]

    Wei Y J, Yang R G 2019 Natl. Sci. Rev. 6 324Google Scholar

    [2]

    L ee, C, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [3]

    Cao K, Feng S Z, Han Y, Gao L B, Ly T H, Xu Z P, Lu Y 2020 Nat. Commun. 11 284Google Scholar

    [4]

    Shim J, Yun J M, Yun T, Kim P, Lee K E, Lee W J, R R, Pine D J, Yi G R, Kim S O 2014 Nano Lett. 14 1388Google Scholar

    [5]

    Li P, Yang M C, Liu Y J, Qin H S, Liu J R, Xu Z, Liu Y L, Meng F X, Lin J H, Wang F, Gao C 2020 Nat. Commun. 11 2645Google Scholar

    [6]

    Xiao P, Gu J C, Wan C J, Wang S, He J, Zhang J W, Huang Y J, Kuo S W, Chen T 2016 Chem. Mater. 28 7125Google Scholar

    [7]

    Xu Z, Gao C 2015 Mater. Today 18 480Google Scholar

    [8]

    Zhang X, Zhong L, Mateos A, Kudo A, Vyatskikh A, Gao H J, Greer J R, Li X Y 2019 Nat. Nanotechnol. 14 762Google Scholar

    [9]

    Zhong L, Gao H J, Li X Y 2020 Extreme Mech. Lett. 37 100699Google Scholar

    [10]

    Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C 2017 Adv. Mater. 29 1700589Google Scholar

    [11]

    Zhang J, Xiao J L, Meng X H, Monroe C, Huang Y G, Zuo J M 2010 Phys. Rev. Lett. 104 166805Google Scholar

    [12]

    邓剑锋, 李慧琴, 于帆, 梁齐 2020 69 076802Google Scholar

    Deng J F, Li H Q, Yu F, Liang Q 2020 Acta Phys. Sin. 69 076802Google Scholar

    [13]

    Jia X Z, Liu Z, Gao E L 2020 npj Comput. Mater. 6 13Google Scholar

    [14]

    Ahn Y, Kim J, Ganorkar S, Kim Y H, Kim S I 2016 Mater. Express 6 69Google Scholar

    [15]

    Grimm S, Schweiger M, Eigler S, Zaumseil J 2016 J. Phys. Chem. C 120 3036Google Scholar

    [16]

    Liu Y J, Liang C, Wei A R, Jiang Y Q, Tian Q S, Wu Y, Xu Z, Li Y F, Guo F, Yang Q Y, Gao W W, Wang H T, Gao C 2018 Mater. Today Nano 3 1Google Scholar

    [17]

    Ruiz L, Xia W J, Meng Z X, Keten S 2015 Carbon 82 103Google Scholar

    [18]

    Shen Y K, Wu H A 2012 Appl. Phys. Lett. 100 101909Google Scholar

    [19]

    Liu F, Song S Y, Xue D F, Zhang H J 2012 Adv. Mater. 24 1089Google Scholar

    [20]

    Ugeda M M, Fernández-Torre D, Brihuega I, Pou P, Martínez-Galera A J, Pérez R, Gómez-Rodríguez J M 2011 Phys. Rev. Lett. 107 116803Google Scholar

    [21]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [22]

    何欣, 白清顺, 白锦轩 2016 65 116101Google Scholar

    He X, Bai Q S, Bai J X 2016 Acta Phys. Sin. 65 116101Google Scholar

    [23]

    Plimpton S J 1995 J. Comput. Phys. 117 1Google Scholar

    [24]

    He Z Z, Zhu Y B, Xia J, Wu H A 2019 J. Mech. Phys. Solid 133 103706Google Scholar

    [25]

    Wu K J, Song Z Q, He L H, Ni Y 2018 Nanoscale 10 556Google Scholar

    [26]

    Zhang T, Li X Y, Gao H J 2014 Extreme Mech. Lett. 1 3Google Scholar

    [27]

    Zhang P, Ma L L, Fan F F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y J, Zhang J N, Zhang X X, Ajayan P M, Zhu T 2014 Nat. Commun. 5 3782Google Scholar

    [28]

    Wang G R, Dai Z H, Wang Y L, Tan P H, Liu L Q, Xu Z P, Wei Y G, Huang R, Zhang Z 2017 Phys. Rev. Lett. 119 036101Google Scholar

  • 图 1  多层折叠石墨烯的分子动力学模型

    Fig. 1.  Model of multilayer folded graphene for molecular dynamics simulation.

    图 2  不同退火温度Ta处理时温度随模拟时间的变化

    Fig. 2.  Evolutions of temperature with simulation time for different annealing temperature Ta.

    图 3  不同退火温度Ta下多层折叠石墨烯的拉伸应力应变曲线

    Fig. 3.  Stress-strain curves of multilayer folded graphene under different annealing temperature Ta.

    图 4  不同退火温度处理下多层折叠石墨烯力学性能的变化 (a) 弹性模量; (b) 拉伸强度; (c) 拉伸极限应变; (d) 断裂韧性

    Fig. 4.  Dependence of mechanical properties of multilayer folded graphene on the annealing temperature: (a) Elastic modulus; (b) tensile strength; (c) ultimate tensile strain; (d) fracture toughness.

    图 5  (a), (b) 不同退火温度处理下平整带缺陷多层石墨烯弹性模量与拉伸强度的变化; (c), (d) 不同退火温度处理下折叠无缺陷多层石墨烯弹性模量与拉伸强度的变化

    Fig. 5.  (a), (b) Dependence of elastic modulus and tensile strength on the annealing temperature, respectively, for the flat multilayer graphene with vacancy defects; (c), (d) dependence of elastic modulus and tensile strength on the annealing temperature, respectively, for the folded multilayer graphene without defects.

    图 6  退火温度Ta为300 K下多层折叠石墨烯的微观结构演化

    Fig. 6.  Atomic structural evolution of multilayer folded graphene under the annealing temperature Ta at 300 K.

    图 7  退火温度Ta为1500 K下多层折叠石墨烯的微观结构演化

    Fig. 7.  Atomic structural evolution of multilayer folded graphene under the annealing temperature Ta at 1500 K.

    图 8  退火温度Ta为2500 K下多层折叠石墨烯的微观结构演化

    Fig. 8.  Atomic structural evolution of multilayer folded graphene under the annealing temperature Ta at 2500 K.

    Baidu
  • [1]

    Wei Y J, Yang R G 2019 Natl. Sci. Rev. 6 324Google Scholar

    [2]

    L ee, C, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [3]

    Cao K, Feng S Z, Han Y, Gao L B, Ly T H, Xu Z P, Lu Y 2020 Nat. Commun. 11 284Google Scholar

    [4]

    Shim J, Yun J M, Yun T, Kim P, Lee K E, Lee W J, R R, Pine D J, Yi G R, Kim S O 2014 Nano Lett. 14 1388Google Scholar

    [5]

    Li P, Yang M C, Liu Y J, Qin H S, Liu J R, Xu Z, Liu Y L, Meng F X, Lin J H, Wang F, Gao C 2020 Nat. Commun. 11 2645Google Scholar

    [6]

    Xiao P, Gu J C, Wan C J, Wang S, He J, Zhang J W, Huang Y J, Kuo S W, Chen T 2016 Chem. Mater. 28 7125Google Scholar

    [7]

    Xu Z, Gao C 2015 Mater. Today 18 480Google Scholar

    [8]

    Zhang X, Zhong L, Mateos A, Kudo A, Vyatskikh A, Gao H J, Greer J R, Li X Y 2019 Nat. Nanotechnol. 14 762Google Scholar

    [9]

    Zhong L, Gao H J, Li X Y 2020 Extreme Mech. Lett. 37 100699Google Scholar

    [10]

    Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C 2017 Adv. Mater. 29 1700589Google Scholar

    [11]

    Zhang J, Xiao J L, Meng X H, Monroe C, Huang Y G, Zuo J M 2010 Phys. Rev. Lett. 104 166805Google Scholar

    [12]

    邓剑锋, 李慧琴, 于帆, 梁齐 2020 69 076802Google Scholar

    Deng J F, Li H Q, Yu F, Liang Q 2020 Acta Phys. Sin. 69 076802Google Scholar

    [13]

    Jia X Z, Liu Z, Gao E L 2020 npj Comput. Mater. 6 13Google Scholar

    [14]

    Ahn Y, Kim J, Ganorkar S, Kim Y H, Kim S I 2016 Mater. Express 6 69Google Scholar

    [15]

    Grimm S, Schweiger M, Eigler S, Zaumseil J 2016 J. Phys. Chem. C 120 3036Google Scholar

    [16]

    Liu Y J, Liang C, Wei A R, Jiang Y Q, Tian Q S, Wu Y, Xu Z, Li Y F, Guo F, Yang Q Y, Gao W W, Wang H T, Gao C 2018 Mater. Today Nano 3 1Google Scholar

    [17]

    Ruiz L, Xia W J, Meng Z X, Keten S 2015 Carbon 82 103Google Scholar

    [18]

    Shen Y K, Wu H A 2012 Appl. Phys. Lett. 100 101909Google Scholar

    [19]

    Liu F, Song S Y, Xue D F, Zhang H J 2012 Adv. Mater. 24 1089Google Scholar

    [20]

    Ugeda M M, Fernández-Torre D, Brihuega I, Pou P, Martínez-Galera A J, Pérez R, Gómez-Rodríguez J M 2011 Phys. Rev. Lett. 107 116803Google Scholar

    [21]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [22]

    何欣, 白清顺, 白锦轩 2016 65 116101Google Scholar

    He X, Bai Q S, Bai J X 2016 Acta Phys. Sin. 65 116101Google Scholar

    [23]

    Plimpton S J 1995 J. Comput. Phys. 117 1Google Scholar

    [24]

    He Z Z, Zhu Y B, Xia J, Wu H A 2019 J. Mech. Phys. Solid 133 103706Google Scholar

    [25]

    Wu K J, Song Z Q, He L H, Ni Y 2018 Nanoscale 10 556Google Scholar

    [26]

    Zhang T, Li X Y, Gao H J 2014 Extreme Mech. Lett. 1 3Google Scholar

    [27]

    Zhang P, Ma L L, Fan F F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y J, Zhang J N, Zhang X X, Ajayan P M, Zhu T 2014 Nat. Commun. 5 3782Google Scholar

    [28]

    Wang G R, Dai Z H, Wang Y L, Tan P H, Liu L Q, Xu Z P, Wei Y G, Huang R, Zhang Z 2017 Phys. Rev. Lett. 119 036101Google Scholar

  • [1] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理.  , 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [2] 徐吉元, 张家滕, 孟睿阳, 陈红升, 方以坤, 董生智, 李卫. 烧结Nd25.5Dy6.5Co13FebalM1.05B0.98磁体温度稳定性和力学性能研究.  , 2023, 72(7): 077502. doi: 10.7498/aps.72.20222045
    [3] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟.  , 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [4] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为.  , 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [5] 韩同伟, 李仁, 操淑敏, 张小燕. 官能化对五边形石墨烯力学性能的影响及机理研究.  , 2021, 70(22): 226201. doi: 10.7498/aps.70.20210764
    [6] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟.  , 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [7] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟.  , 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [8] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [9] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟.  , 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [10] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟.  , 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [11] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟.  , 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [12] 樊倩, 徐建刚, 宋海洋, 张云光. 层厚度和应变率对铜-金复合纳米线力学性能影响的模拟研究.  , 2015, 64(1): 016201. doi: 10.7498/aps.64.016201
    [13] 王琛, 宋海洋, 安敏荣. 界面旋转角对双晶镁力学性质影响的分子动力学模拟.  , 2014, 63(4): 046201. doi: 10.7498/aps.63.046201
    [14] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟.  , 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [15] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究.  , 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [16] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响.  , 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [17] 王立群, 王明霞, 李德军, 杨 瑾, 余大书, 宿 杰. N2分压对ZrN/WN纳米多层膜缺陷性质与力学性能的影响.  , 2007, 56(6): 3435-3439. doi: 10.7498/aps.56.3435
    [18] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟.  , 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [19] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟.  , 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能.  , 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
计量
  • 文章访问数:  8990
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-02
  • 修回日期:  2020-06-28
  • 上网日期:  2020-09-29
  • 刊出日期:  2020-10-05

/

返回文章
返回
Baidu
map