Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene

Hui Zhi-Xin He Peng-Fei Dai Ying Wu Ai-Hui

Citation:

Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene

Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Direct non-equilibrium molecular dynamics (NEMD) was used to simulate the thermal conductivities of the monolayer and the bilayer silicon functionalized graphenes along the length direction respectively, with the Tersoff potential and the Lennard-Jones potential, based on the velocity Verlet time stepping algorithm and the Fourier law. Simulation results indicate that the thermal conductivity of the monolayer silicon functionalized graphene decreases rapidly with increasing amount of silicon atoms. This phenomenon could be primarily attributed to the changes of graphene phonon modes, mean free path, and motion speed after silicon atoms are embedded in the graphene layer. Meanwhile, the thermal conductivity of the monolayer graphene is declined in the temperature range from 300 to 1000 K. As for the bilayer silicon functionalized graphene, its thermal conductivity increases as a few silicon atoms are inserted into the layer, but decreases when the number of silicon atoms reaches a certain value.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China, the Natural Science Foundation of Shanghai, China (Grant No. 11ZR1439100), the Scientific Research Foundation of the Higher Education Institutions of Ningxia Province, China (Grant No. [2012]336), and the Innovative Research Team Project of Ningxia Normal College, China (Grant No.ZY201211).
    [1]

    Barpanda P, Chotard J N, Delacourt C, Reynaud M, Filinchuk Y, Armand M, Tarascon J M 2011 Angew. Chem. Int. Ed. 50 2526

    [2]

    Kim H, Seo M, Park M H, Cho J 2010 Angew. Chem. Int. Ed. 49 2146

    [3]

    Jafta C J, Ozoemena K I, Mathe M K, Roos W D 2012 Electrochim. Acta. 85 411

    [4]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Q 2012 Physics 41 02 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英2012 物理41 02]

    [5]

    Song L, Evans J W 1999 J. Electrochem. Soc. 146 869

    [6]

    Novoselov K, Geim K, Morozov S V, Jiang D, Zhang Y, Dubonos S V 2004 Sci. 306 666

    [7]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Stormer H L 2008 Sol. Sta. Com. 146 351

    [8]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Hong B H 2009 Nat. 457 706

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Grigorieva M K I, Dubonos S V, Firsov A A 2005 Nature 438 197

    [10]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nat. 438 201

    [11]

    Suzuki T, Hasegawa T, Mukai S R, Tamon H 2003 Carbon 41 1933

    [12]

    Paek S M, Yoo E, Honma I 2008 Nano Lett. 9 72

    [13]

    Wang G, Shen X, Yao J, Park J 2009 Carbon 47 2049

    [14]

    Lee J K, Smith K B, Hayner C M, Kung H H 2010 Chem. Commun. 46 2025

    [15]

    Mai Y J, Wang X L, Xiang J Y, Qiao Y Q, Zhang D, Gu C D, Tu J P 2011 Electrochim. Acta 56 2306

    [16]

    Zhao X, Hayner C M, Kung M C, Kung H H 2011 Adv. Energy Mater. 1 1079

    [17]

    Lee J K, Smith K B, Hayner C M, Kung H H 2010 Chem. Commun. 46 2025

    [18]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Shi L 2010 Sci. 328 213

    [19]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [20]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 76501 (in Chinese) [杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟2012 61 76501]

    [21]

    Yu W, Xie H, Li F, Zhao J, Zhang Z 2013 Appl. Phys. Lett. 103 141913

    [22]

    Kim J, Im H, Kim J M, Kim J 2012 J. Mater. Sci. 47 1418

    [23]

    Williams G, Seger B, Kamat P V 2008 ACS Nano 2 1487

    [24]

    Wang J, Wu W D, Shen J, Lu X P 1995 Physics 24 1 (in Chinese) [王珏, 吴卫东, 沈军, 陆献平1995 物理24 1]

    [25]

    Plimpton S 1995 J. Compu. Phys. 7 1

    [26]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [27]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [28]

    Tersoff J 1990 Phys. Rev. B 41 3248

    [29]

    Baskes M I 1999 Phys. Rev. Lett. 83 2592

    [30]

    Allen M P, Tildesley D J 1989 Computer simulation of liquids (London: Oxford university press) p233

    [31]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [32]

    Nosé S 1984 Mol. Phys. 52 255

    [33]

    Nosé S 1984 J. Chem. Phys. 81 511

    [34]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [35]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [36]

    Che J, Çağin T, Deng W, Goddard Ⅲ W A 2000 J. Chem. Phys. 113 6888

    [37]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139

    [38]

    Ladd A J, Moran B, Hoover W G 1986 Phys. Rev. B 34 5058

    [39]

    Lee Y H, Biswas R, Soukoulis C M, Wang C Z, Chan C T, Ho K M 1991 Phys. Rev. B 43 6573

    [40]

    Volz S G, Chen G 2000 Phys. Rev. B 61 2651

    [41]

    Oligschleger C, Schö n J C 999 Phys. Rev. B 59 4125

    [42]

    Jund P, Jullien R 1999 Phys. Rev. B 59 13707

    [43]

    Berber S, Kwon Y K, Tomanek D 2000 Phys. Rev. Lett. 84 613

    [44]

    Muller-Plathe, 1999 Phys. Rev. E 59 4894

    [45]

    Huang K, Han R Q 1998 Solid State Physics (Beijing: Beijing University Press) p143 (in Chinese) [黄昆, 韩汝琦1998 固体物理学(北京大学出版社) 第143 页]

    [46]

    Wei Z Y, Bi K D, ChenY F 2010 Journal of Southeast University (Narural Science Edition) 40 306 (in Chinese)[魏志勇, 毕可东, 陈云飞2010 东南大学学报(自然科学版) 40 306]

    [47]

    Ghosh S, Callizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Lau C N 2008 Appl. Phys. Lett. 92 151911

    [48]

    Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963

    [49]

    Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Ruoff R S 2012 Nat. Mater. 11 203

  • [1]

    Barpanda P, Chotard J N, Delacourt C, Reynaud M, Filinchuk Y, Armand M, Tarascon J M 2011 Angew. Chem. Int. Ed. 50 2526

    [2]

    Kim H, Seo M, Park M H, Cho J 2010 Angew. Chem. Int. Ed. 49 2146

    [3]

    Jafta C J, Ozoemena K I, Mathe M K, Roos W D 2012 Electrochim. Acta. 85 411

    [4]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Q 2012 Physics 41 02 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英2012 物理41 02]

    [5]

    Song L, Evans J W 1999 J. Electrochem. Soc. 146 869

    [6]

    Novoselov K, Geim K, Morozov S V, Jiang D, Zhang Y, Dubonos S V 2004 Sci. 306 666

    [7]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Stormer H L 2008 Sol. Sta. Com. 146 351

    [8]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Hong B H 2009 Nat. 457 706

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Grigorieva M K I, Dubonos S V, Firsov A A 2005 Nature 438 197

    [10]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nat. 438 201

    [11]

    Suzuki T, Hasegawa T, Mukai S R, Tamon H 2003 Carbon 41 1933

    [12]

    Paek S M, Yoo E, Honma I 2008 Nano Lett. 9 72

    [13]

    Wang G, Shen X, Yao J, Park J 2009 Carbon 47 2049

    [14]

    Lee J K, Smith K B, Hayner C M, Kung H H 2010 Chem. Commun. 46 2025

    [15]

    Mai Y J, Wang X L, Xiang J Y, Qiao Y Q, Zhang D, Gu C D, Tu J P 2011 Electrochim. Acta 56 2306

    [16]

    Zhao X, Hayner C M, Kung M C, Kung H H 2011 Adv. Energy Mater. 1 1079

    [17]

    Lee J K, Smith K B, Hayner C M, Kung H H 2010 Chem. Commun. 46 2025

    [18]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Shi L 2010 Sci. 328 213

    [19]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [20]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 76501 (in Chinese) [杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟2012 61 76501]

    [21]

    Yu W, Xie H, Li F, Zhao J, Zhang Z 2013 Appl. Phys. Lett. 103 141913

    [22]

    Kim J, Im H, Kim J M, Kim J 2012 J. Mater. Sci. 47 1418

    [23]

    Williams G, Seger B, Kamat P V 2008 ACS Nano 2 1487

    [24]

    Wang J, Wu W D, Shen J, Lu X P 1995 Physics 24 1 (in Chinese) [王珏, 吴卫东, 沈军, 陆献平1995 物理24 1]

    [25]

    Plimpton S 1995 J. Compu. Phys. 7 1

    [26]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [27]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [28]

    Tersoff J 1990 Phys. Rev. B 41 3248

    [29]

    Baskes M I 1999 Phys. Rev. Lett. 83 2592

    [30]

    Allen M P, Tildesley D J 1989 Computer simulation of liquids (London: Oxford university press) p233

    [31]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [32]

    Nosé S 1984 Mol. Phys. 52 255

    [33]

    Nosé S 1984 J. Chem. Phys. 81 511

    [34]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [35]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [36]

    Che J, Çağin T, Deng W, Goddard Ⅲ W A 2000 J. Chem. Phys. 113 6888

    [37]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139

    [38]

    Ladd A J, Moran B, Hoover W G 1986 Phys. Rev. B 34 5058

    [39]

    Lee Y H, Biswas R, Soukoulis C M, Wang C Z, Chan C T, Ho K M 1991 Phys. Rev. B 43 6573

    [40]

    Volz S G, Chen G 2000 Phys. Rev. B 61 2651

    [41]

    Oligschleger C, Schö n J C 999 Phys. Rev. B 59 4125

    [42]

    Jund P, Jullien R 1999 Phys. Rev. B 59 13707

    [43]

    Berber S, Kwon Y K, Tomanek D 2000 Phys. Rev. Lett. 84 613

    [44]

    Muller-Plathe, 1999 Phys. Rev. E 59 4894

    [45]

    Huang K, Han R Q 1998 Solid State Physics (Beijing: Beijing University Press) p143 (in Chinese) [黄昆, 韩汝琦1998 固体物理学(北京大学出版社) 第143 页]

    [46]

    Wei Z Y, Bi K D, ChenY F 2010 Journal of Southeast University (Narural Science Edition) 40 306 (in Chinese)[魏志勇, 毕可东, 陈云飞2010 东南大学学报(自然科学版) 40 306]

    [47]

    Ghosh S, Callizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Lau C N 2008 Appl. Phys. Lett. 92 151911

    [48]

    Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963

    [49]

    Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Ruoff R S 2012 Nat. Mater. 11 203

  • [1] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong. Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [2] Li Ting, Bi Xiao-Yue, Kong Jing-Wen. Mechanical and thermal properties of phosphorene under shear deformation. Acta Physica Sinica, 2023, 72(12): 126201. doi: 10.7498/aps.72.20230084
    [3] Li Yao-Long, Li Zhe, Li Song-Yuan, Zhang Ren-Liang. Regulation of thermal conductivity of bilayer graphene nanoribbon through interlayer covalent bond and tensile strain. Acta Physica Sinica, 2023, 72(24): 243101. doi: 10.7498/aps.72.20231230
    [4] Zheng Cui-Hong, Yang Jian, Xie Guo-Feng, Zhou Wu-Xing, Ouyang Tao. Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [5] Wang Fu, Zhou Yi, Gao Shi-Xin, Duan Zhen-Gang, Sun Zhi-Peng, Wang Jun, Zou Yu, Fu Bao-Qin. Molecular dynamics study of effects of point defects on thermal conductivity in cubic silicon carbide. Acta Physica Sinica, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [6] Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211857
    [7] Effects of point defects on thermal conductivity in cubic silicon carbide: A molecular dynamics study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211434
    [8] Liu Ying-Guang, Ren Guo-Liang, Hao Jiang-Shuai, Zhang Jing-Wen, Xue Xin-Qiang. Thermal conductivity of Si/Ge superlattices containing tilted interface. Acta Physica Sinica, 2021, 70(11): 113101. doi: 10.7498/aps.70.20201807
    [9] Xu Wen-Xue, Liang Xin-Gang, Xu Xiang-Hua, Zhu Yuan. Molecular dynamics simulation of effect of crosslinking on thermal conductivity of silicone rubber. Acta Physica Sinica, 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [10] Wang Peng-Ju, Fan Jun-Yu, Su Yan, Zhao Ji-Jun. Energetic potential of hexogen constructed by machine learning. Acta Physica Sinica, 2020, 69(23): 238702. doi: 10.7498/aps.69.20200690
    [11] Lan Sheng, Li Kun, Gao Xin-Yun. Based on the molecular dynamics characteristic research of heat conduction of graphyne nanoribbons with vacancy defects. Acta Physica Sinica, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [12] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Coarse-grain model of silicon functionalized graphene as anode material for lithium ion batteries. Acta Physica Sinica, 2015, 64(14): 143101. doi: 10.7498/aps.64.143101
    [13] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [14] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [15] Zhou Nai-Gen, Hu Qiu-Fa, Xu Wen-Xiang, Li Ke, Zhou Lang. A comparative study of different potentials for molecular dynamics simulations of melting process of silicon. Acta Physica Sinica, 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [16] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei. The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Acta Physica Sinica, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [17] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [18] Li Shi-Bin, Wu Zhi-Ming, Yuan Kai, Liao Nai-Man, Li Wei, Jiang Ya-Dong. Study on thermal conductivity of hydrogenated amorphous silicon films. Acta Physica Sinica, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [19] Wu Guo-Qiang, Kong Xian-Ren, Sun Zhao-Wei, Wang Ya-Hui. Molecular dynamics simulation on the out-of plane thermal conductivity of argon crystal thin films. Acta Physica Sinica, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [20] Bao Wen-Xing, Zhu Chang-Chun. Study of thermal conduction of carbon nanotube by molecular dynamics. Acta Physica Sinica, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
Metrics
  • Abstract views:  8208
  • PDF Downloads:  1581
  • Cited By: 0
Publishing process
  • Received Date:  07 November 2013
  • Accepted Date:  17 December 2013
  • Published Online:  05 April 2014

/

返回文章
返回
Baidu
map