Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation

Wang Qi Yan Ling-Ling Chen Bing-Bing Li Ren-Jie Wang San-Long Wang Peng-Yang Huang Qian Xu Sheng-Zhi Hou Guo-Fu Chen Xin-Liang Li Yue-Long Ding Yi Zhang De-Kun Wang Guang-Cai Zhao Ying Zhang Xiao-Dan

Citation:

Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation

Wang Qi, Yan Ling-Ling, Chen Bing-Bing, Li Ren-Jie, Wang San-Long, Wang Peng-Yang, Huang Qian, Xu Sheng-Zhi, Hou Guo-Fu, Chen Xin-Liang, Li Yue-Long, Ding Yi, Zhang De-Kun, Wang Guang-Cai, Zhao Ying, Zhang Xiao-Dan
PDF
HTML
Get Citation
  • Perovskite/silicon heterojunction tandem solar cells have developed rapidly in recent years, and their efficiency is enhanced from 13.7% to 29.1%. As is well known, the optical loss has a great influence on the efficiency. Due to the complex fabrication process of tandem solar cells, it is important to obtain high-performance tandems through optical simulation. In this paper, optical simulation methods are mainly summarized from two aspects: commercial software and self-built model. Then, the progress of optical simulation is analyzed in terms of reflection loss and parasitic absorption. Finally, what should be paid more attention to in the optical simulation of tandem solar cells is pointed out. The efficiency limit of perovskite/silicon heterojunction tandem solar cells can reach up to 40%, but there remains much room for improvement. The research on optical simulation will lay the foundation of developing the tandem solar cells.
      Corresponding author: Zhao Ying, zhaoygds@nankai.edu.cn ; Zhang Xiao-Dan, xdzhang@nankai.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1500103), the National Natural Science Foundation of China (Grant No. 61674084), the Innovation and Talent Introduction Plan in Colleges and Universities (111 plan), China (Grant No. B16027), the Military Civilian Integration Project of Tianjin, China (Grant No. 18ZXJMTG00220), and the Fundamental Research Funds of Central Universities, China (Grant Nos. 63201171, 63201173)
    [1]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H 2017 Nat. Energy 2 17032Google Scholar

    [2]

    Wolf S D, Descoeudres A, Holman Z C, Ballif C 2012 Green 2 7

    [3]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2019 J. Am. Chem. Soc. 131 6050

    [4]

    Bailie C D, Mcgehee M D 2015 MRS Bull. 40 681Google Scholar

    [5]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Graetzel M 2012 J. Am. Chem. Soc. 134 17396Google Scholar

    [6]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [7]

    Dewi H A, Wang H, Li J, Thway M, Sridharan R, Stangl R, Lin F, Aberle A G, Mathews N, Bruno A, Mhaisalkar S 2019 ACS Appl. Mater. Interfaces 11 34178Google Scholar

    [8]

    Qiu W, Paetzold U W, Aernouts T, Debucquoy M, Gehlhaar R, Poortmans J 2018 Energy Environ. Sci. 11 1489Google Scholar

    [9]

    Jackson E 1995 Transactions of the Conference on the Use of Solar Energy Tucson, October 31–November 1, 1995 5 122

    [10]

    Werner J, Niesen B, Ballif C 2018 Adv. Mater. Interfaces 17 00731

    [11]

    Kohnen E 2020 European PV Solar Energy Conference and Exhibition (EUPVSEC) Lisbon, Portugal, Germany, September 7–11, 2020

    [12]

    Filipic M, Loper P, Niesen B, de Wolf S, Krc J, Ballif C, Topic M 2015 Opt. Express 23 A263Google Scholar

    [13]

    Loper P, Niesen B, Moon S J, Martin de Nicolas S, Holovsky J, Remes Z, Ledinsky M, Haug F J, Yum J H, De Wolf S, Ballif C 2014 IEEE J. Photovoltaics 4 1545Google Scholar

    [14]

    Lal N N, White T P, Catchpole K R 2014 IEEE J. Photovoltaics 4 1380Google Scholar

    [15]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [16]

    Brittman S, Garnett E C 2016 J. Phys. Chem. A 120 616

    [17]

    Green M A 2015 Sol. Energy Mater. Sol. Cells 92 1305

    [18]

    Hara T, Maekawa T, Minoura S, Sago Y, Niki S, Fujiwara H 2014 Phys. Rev. Appl. 2 034012Google Scholar

    [19]

    Nakane A, Tampo H, Tamakoshi M, Fujimoto S, Kim K M, Kim S, Shibata H, Niki S, Fujiwara H 2016 J. Appl. Phys. 120 61

    [20]

    Nakane A, Fujimoto S, Fujiwara H 2017 J. Appl. Phys. 122 20

    [21]

    Altazin S, Stepanova L, Lapagna K, Losio P, Ruhstaller B 2018 Opt. Express 26 A579Google Scholar

    [22]

    Chen D, Manley P, Tockhorn P, Eisenhauer D, Jäger K 2018 J. Photonics Energy 8 2

    [23]

    Jacobs D A, Langenhorst M, Sahli F, Richards B S, Paetzold U W 2019 J. Phys. Chem. Lett. 10 3159Google Scholar

    [24]

    Askari S A, Kumar M, Das M K 2018 Semicond. Sci. Technol. 33 115003Google Scholar

    [25]

    Guang T Y, Pei Q G, Paul, Procel, Gianluca, Limodio, Arthur, Weeber 2018 Sol. Energy Mater. Sol. Cells 186 13

    [26]

    Park H, Lee Y J, Shin M, Lee Y J, Lee J, Park C, Yi 2018 Curr. Photovoltaics Research 4 102

    [27]

    Borah C K, Tyagi P K, Kumar S, Patel K 2018 Comput. Mater. Sci. 151 65Google Scholar

    [28]

    Santbergen R, Uzu H, Yamamoto K, Zeman M 2019 IEEE J. Photovoltaics PP 1

    [29]

    Macqueen R W, Martin L, Jens N, Mathias M, Clemens G, Sara J C, Klaus J G, Tayebjee M J Y, Schmidt T W, Bernd R 2018 Mater. Horiz. 5 1065Google Scholar

    [30]

    Nico T, Oliver H H, Christoph G J, Benedikt B S 2018 Opt. Express 2 6

    [31]

    Solar Energy Systems, Johannes E, Nico T, Habtamu G https://pvlighthouse.com.au/cms/simulation-programs/optos [2020-10-23]

    [32]

    JCMsuite, Jservice http://www.jservice.com.cn/sciencenews/jcmsuite/ [2020-10-23]

    [33]

    Ernst M, Holst H, Winter M, Altermatt P P 2016 Sol. Energy Mater. Sol. Cells 157 913Google Scholar

    [34]

    Bird R E, Riordan C 1986 J. Climate Appl. Meteor. 25 87Google Scholar

    [35]

    Mcintosh K R, Cotsell J N, Norris A W, Powell N E, Ketola B M 2010 Photovoltaic Specialists Conference Hawaii, June 20–25, 2010 p269

    [36]

    Baker-Finch S C, Mcintosh K R 2010 Photovoltaic Specialists Conference (PVSC) December 17–19, 2010 p2184

    [37]

    Eisenlohr J, Tucher N, Hn O, Hauser H, Peters M, Kiefel P, Goldschmidt J C, BläSi B 2015 Opt. Express 23 A502Google Scholar

    [38]

    Tucher N, Eisenlohr J, Kiefel P, Höhn O, Bläsi B 2015 Opt. Express 23 A1720Google Scholar

    [39]

    Basore P A 2020 IEEE J. Photovoltaics 10 905Google Scholar

    [40]

    Basore P A 2018 IEEE J. Photovoltaics 9 106

    [41]

    Simulation Software, Beat R, Daniele B http://www.fluxim.com/setfos-intro/ [2020-10-23]

    [42]

    Simulation Software, Alex N, Marc B, Koen D, Stefaan D, Johan V http://scaps.elis.ugent.be/ [2020-10-23]

    [43]

    Liu Y, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar

    [44]

    Liu Y, Sun Y, Rockett A 2012 IEEE Photovoltaic Specialists Conference Austin, USA, June 3–8, 2012 p000902

    [45]

    Liu Y, Heinzel D, Rockett A 2011 IEEE Photovoltaic Specialists Conference Orlando, USA, February 17–19, 2011 p002753

    [46]

    Liu Y, Heinzel D, Rockett A 2010 IEEE Photovoltaic Specialists Conference Honolulu, USA, June 20–25, 2010 p001943

    [47]

    Qarony W, Hossain M I, Hossain M K, Uddin M J, Haque A, Saad A R, Tsang Y H 2017 Results Phys. 7 4287Google Scholar

    [48]

    Chen G L, Han C, Yan L L, Li Y, Zhao Y, Zhang X D 2019 J. Semicond. 40 12

    [49]

    Gong J, Dai R, Wang Z, Zhang C, Yuan X, Zhang Z 2017 Mater. Res. Express 4 085005Google Scholar

    [50]

    Xu J P, Zhang R J, Zhang Y, Wang Z Y, Chen L, Huang Q H, Lu H L, Wang S Y, Zheng Y X, Chen L Y 2016 Phys. Chem. Chem. Phys. 18 3316Google Scholar

    [51]

    李江, 唐敬友, 裴旺, 魏贤华, 黄峰 2015 11 110702Google Scholar

    Li J, Tang J Y, Pei W, Wei X H, Huang F 2015 Acta Phys. Sin. 11 110702Google Scholar

    [52]

    Prange M P, Rehr J J, Rivas G, Kas J J, Lawson, John W 2009 Phys. Rev. E 80 15

    [53]

    Minkov A D 2000 J. Phys. D: Appl. Phys. 22 1157

    [54]

    Marquez E, Ramirez-Malo J, Villares P, Jimenez-Garay R, Ewen P J S, Owen A E 2000 J. Phys. D: Appl. Phys. 139 535

    [55]

    Yue L, Chen H 2019 EURASIP J. Wireless Commun. 19 1474

    [56]

    Henderson D, Jacobson S H, Johnson A W 2003 Handbook of Metaheuristics (Boston: Springer) (Vol.3) p287

    [57]

    Li J C, Su J H 2012 Adv. Mater. Res. 462 33Google Scholar

    [58]

    Attia A A, El-Bana M S, Habashy D M, Fouad S S, El-Bakry M Y 2017 J. Appl. Res. Technol. 15 423

    [59]

    Bittkau K, Kirchartz T, Rau U 2018 Opt. Express 26 181

    [60]

    叶帆, 顾兵, 黄晓琴 2010 光学仪器 32 90Google Scholar

    Ye F, Gu B, Huang X Q 2010 Opt. Instrum. 32 90Google Scholar

    [61]

    李国龙, 钟景明, 王立惠, 李进, 何力军, 李海波, 高忙忙 2016 激光与光电子学进展 53 4

    Li G L, Zhong J M, Wang L H, Li J, He L J, Li H B, Gao M M 2016 Las. Optoelect. Prog. 53 4

    [62]

    Su W T, Li B, Liu D Q, Zhang F S 2007 J. Phys. D: Appl. Phys. 40 3343Google Scholar

    [63]

    周毅 2010 硕士学位论文 (北京: 中国科学院研究生院)

    Zhou Y 2010 M. S. Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [64]

    蒋和伦, 刘启能 2016 半导体光电 37 218

    Jiang H L, Liu Q N 2016 Semiconductor Optoelectronics 37 218

    [65]

    Nakanishi A, Takiguchi Y, Miyajima S 2016 Phys. Status Solidi A. ePSS 213 1997

    [66]

    Hou Y, Aydin E, Bastiani M D, Xiao C, Isikgor H F, Xue D J 2020 Science 367 1135Google Scholar

    [67]

    Jošt M, Köhnen E, Morales-Vilches A B, Lipovšek B, Jäger K, Macco B, Al-Ashouri A, Krč J, Korte L, Rech B 2018 Energy Environ. Sci. 11 3511Google Scholar

    [68]

    Tao H, Zhang W, Zhang C, Han L, Wang J, Tan B, Li Y, Kan C 2019 Opt. Commun. 56 112

    [69]

    Manzoor S, Yu Z J, Ali A, Ali W, Bush K A, Palmstrom A F, Bent S F, Mcgehee M D, Holman Z C 2017 Sol. Energy Mater. Sol. Cells S S0927024817303288

    [70]

    Hou F H, Han C, Isabella O, Yan L L, Shi B, Chen J, An S C, Zhou Z, Huang W, Ren H Z, Zhao Y, Zhang X D 2018 Nano Energy 56 234

    [71]

    Kohnen E, Jot M, Morales-Vilches A B, Tockhorn P, Al-Ashouri A, Macco B, Kegelmann L, Korte L, Rech B, Schlatmann R 2019 Sustainable Energy Fuels 3 1995Google Scholar

    [72]

    Bett A J, Winkler K M, Bivour M 2019 ACS Appl. Mater. Interfaces 11 45796Google Scholar

    [73]

    Jager K, Korte L, Rech B, Albrecht S 2017 Opt. Express 25 12

    [74]

    Salman M, Jakob H, Kevin A B, Axel F P, Joe C, Zhengshan J Y, Stacey F B, Michael D M, Zachary C H 2018 Opt. Express 26 27441

    [75]

    Santbergen R, Mishima R, Meguro T, Hino M, Uzu H, Blanker J, Yamamoto K, Zeman M 2016 Opt. Express 24 A1288Google Scholar

    [76]

    Mazzarella L, Werth M, Jäger K, Jošt M, Stannowski B 2018 Opt. Express 26 103

    [77]

    Schneider B W, Lal N N, Baker-Finch S, White T P 2014 Opt. Express 22 Suppl 6 A1422

    [78]

    Chen B, Yu Z J, Manzoor S, Manzoor S, Wang S, Weigand W, Yu Z, Yang G, Ni Z, Dai X, C.Holman Z, Huang J 2020 Joule 4 850Google Scholar

    [79]

    Wang D L, Cui H J, Hou G J, Zhu Z G, Yan Q B, Su G 2016 Sci. Rep. 6 18922Google Scholar

  • 图 1  钙钛矿/硅叠层太阳电池 (a)四端结构和(b)两端结构[10]; (c)钙钛矿和(d) 晶硅吸收层的光学常数[16,17]

    Figure 1.  (a) Four terminal structure and (b) two terminal structure[10] of the perovskite / silicon tandem solar cells; optical constants of (c) perovskite and (d) c-Si absorbers[16,17].

    图 2  (a) 基于OPTOS软件的光传播模拟过程[31]; (b) 基于JCMsuite的光伏建模过程[32]

    Figure 2.  (a) Light spread process simulated by OPTOS[31]; (b) the optical model built by JCMsuite[32].

    图 3  (a) 光学导纳法自建模型的光线分析过程[19]; CH3NH3PbI3为吸收层的太阳电池的(b)结构和(c)光学损耗分析[19]; (d) 钙钛矿/硅异质结叠层太阳电池隧穿结优化的光损耗分析[59]

    Figure 3.  (a) Light analysis process of optical admittance method[19]; (b) structure and (c) optical loss analysis of solar cells with CH3NH3PbI3 as absorber[19]; (d) tunnel junction optical loss analysis of perovskite / silicon tandem solar cells[59].

    图 4  (a) PDMS作减反层的电池结构[69]; (b) 有、无PDMS减反层的器件EQE对比[69]; (c) LM箔作减反层的电池结构[67]; (d), (e) LM箔作减反层的优化结果[67]

    Figure 4.  (a) Solar cell structure using PDMS as anti-reflection coating[69]; (b) EQE comparison with and without PDMS[69]; (c) solar cell structure using LM foil as anti-reflection coating[67]; (d) (e) optimized result using LM foil as anti-reflection coating[67].

    图 5  (a) 使用LiF作减反层的电池结构[71]; (b) LiF作减反层的电池优化结果[71]; (c) 使用MgF2作减反层的电池结构和优化结果[72]

    Figure 5.  (a) Solar cell structure with LiF as anti-reflection coating[71]; (b) optimized result with LiF as anti-reflection coating[71]; (c) solar cell structure and optimization result with MgF2 as anti-reflection coating[72].

    图 6  (a) 具有平面硅底电池的叠层电池、背面制绒但正面平坦的结构以及增加了中间层的叠层电池结构、具有双面制绒的硅底电池和掩埋层的叠层电池以及增加了减反层的叠层电池、顶和底电池均是双面制绒的叠层器件[75]; (b) 平面的硅、单面制绒的硅以及双面制绒的硅作为底电池的钙钛矿/硅异质结叠层器件结构[76]; (c) 具有单面制绒、双面制绒的器件的光损耗对比图[23]

    Figure 6.  (a) Perovskite/silicon tandem solar cell structure with flat silicon, single-side textured silicon with/without interface layer, tandem solar cell with double-side textured silicon and burial layer, solar cell with anti-reflection layer and double-sided textured structure[75]; (b) perovskite/silicon tandem solar cell structure with flat silicon、one-side textured silicon and double-side textured silicon as bottom cell[76]; (c) comparison of optical loss of devices with one-side texture, double-side texture devices[23].

    图 7  (a) 具有六角形正弦纳米结构的基底原子力显微图(AFM)[22]; (b)生长在这种基底上的钙钛矿的原子力显微图(AFM)[22]; (c)平面钙钛矿的原子力显微图(AFM)[22]; (d)未使用陷光结构的电池EQE图[22]; (e)使用陷光结构后的电池EQE图[22]; (f)和(g)蛾眼纹理钙钛矿的结构图[77]; (h)使用蛾眼纹理钙钛矿的叠层器件EQE图[77]

    Figure 7.  (a) Atom force microscopy (AFM) of substrate with hexagonal sinusoidal nanostructure[22]; (b) AFM image of perovskite growing on this substrate[22]; (c) AFM image of flat perovskite[22]; (d) EQE curve of solar cell without dimple structure[22]; (e) EQE curve of solar cell with dimple structure[22]; (f) and (g) structure image of perovskite with moth eye texture[77]; (h) EQE curve of device with moth eye textured perovskite[77].

    图 8  (a)带有亚微米级金字塔制绒的钙钛矿/硅叠层太阳电池结构[78]; (b)叠层器件I-V测试结果[78]; (c)与其他陷光结构的对比[78]; (d)使用四种陷光结构的叠层器件的反射损耗模拟结果对比图[78]

    Figure 8.  (a) Structure of perovskite/silicon tandem solar cell with submicron pyramids textured structure[78]; (b) I-V results of devices[78]; (c) comparison with the other light trapping structures[78]; (d) comparison of reflection loss of the device using four kinds of structure[78].

    图 9  (a)开槽和(b)棱镜SiO2结构减少钙钛矿太阳电池寄生吸收[79]; 叠层电池优化寄生吸收(c)前和(d)后的器件EQE对比图[73]; (e) 光学和电学综合考虑对ITO寄生吸收优化[71]; (f) 仅从光学角度优化ITO的寄生吸收[71]

    Figure 9.  (a) Slotted and (b) prismatic structure of SiO2 to reduce parasitic absorption of perovskite solar cells[79]; EQE comparison of tandem solar cells (c) before and (d) after optimizing for parasitic absorption[73]; (e) optimization for parasitic absorption of ITO with both optical and electrical considerations[71]; (f) optimization for parasitic absorption of ITO only considerate optical aspect[71].

    表 1  商用软件模拟包及其功能

    Table 1.  Simulation package of commercial software and its functions.

    软件名称功能参考文献
    JCMsuite适用于复杂纳米光学系统的仿真[22]
    FDTD使用时域有限差分算法对太阳电池模拟[26]
    AFORS-HET用于异质结构太阳电池的数值模拟软件[27]
    SunCalculator用于计算所测量的综合太阳辐照度的角度和光谱分布[33]
    Solar spectrum calculator确定入射到器件的光谱辐照度的直接分量, 散射分量和全局分量[34]
    TRACEY用于确定模块在各种入射光谱下的效率以及相关光学损耗[35]
    OPAL模拟太阳电池前表面(主要是减反层)[36]
    OPTOS基于矩阵的仿真算法, 能有效地计算任何表面陷光结构的反射率和透射率[37,38]
    PC3 D用于硅太阳电池的开源三维器件模拟器[39,40]
    SETFOS计算短路电流密度(Jsc), 开路电压(Voc)和填充因子(FF), 添加光散射层以增强吸收[21,41]
    SCAPS一维太阳电池仿真, 适用于晶硅、砷化镓、非晶硅和微晶硅太阳电池[42]
    WXAMPS一维太阳电池模拟[4346]
    DownLoad: CSV

    表 2  光学色散模型及其适用材料

    Table 2.  Optical dispersion model and its applicable materials.

    光学色散模型材料类型文献
    Cauchy model大多数介质材料[60]
    Sellmeier model无吸收的透明介质[60]
    F-B model非晶半导体和绝缘体材料[61]
    Lorentz oscillstor model一般用于红外光谱区的介质膜[62]
    Tauc-Lorentz model无定型半导体(非晶半导体)
    和绝缘体材料
    [63]
    Drude model金属和透明导电膜[64]
    DownLoad: CSV

    表 3  使用减反层减少器件反射损耗

    Table 3.  Using anti-reflection coating to reduce reflection loss of device.

    ARCStructureJsc /(mA·cm2)Improved Jsc/(mA·cm2)YearRef.
    LiFLiF/ITO/SnO2/PCBM/perovskite/NiO/ITO/silicon21.31.62018[22]
    LiFLiF/ITO/TiO2/perovskite/spiro/p-uc-SiOx:H/defective layer/silicon16.71.42016[65]
    LM foilLM/IZO/SnO2/C60/ perovskite/PTAA/ITO/nc-SiOx:H/a-Si:H/Si/a-Si:H/ZnO:Al/Ag19.42.32018[67]
    PDMSPDMS/ITO/na-Si:H/ia-Si:H/C-Si/ia-Si:H/pa-Si:H/ITO/Ag37.53.02017[69]
    LiFLiF/IZO/SnO2/C60/perovskite /PTAA/ITO/nc-SiOx:H(n)/silicon19.21.42019[71]
    LiFLiF/ITO/SnO2/PCBM/ perovskite /NiO/ITO/silicon19.01.42017[73]
    MgF2MgF2/ITO/SnO2/C60/ perovskite /NiO/ITO/silicon19.81.02018[74]
    MgF2MgF2/IZO/spiro/ perovskite /TiO2/ITO/Ag19.551.52019[72]
    DownLoad: CSV
    Baidu
  • [1]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H 2017 Nat. Energy 2 17032Google Scholar

    [2]

    Wolf S D, Descoeudres A, Holman Z C, Ballif C 2012 Green 2 7

    [3]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2019 J. Am. Chem. Soc. 131 6050

    [4]

    Bailie C D, Mcgehee M D 2015 MRS Bull. 40 681Google Scholar

    [5]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Graetzel M 2012 J. Am. Chem. Soc. 134 17396Google Scholar

    [6]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [7]

    Dewi H A, Wang H, Li J, Thway M, Sridharan R, Stangl R, Lin F, Aberle A G, Mathews N, Bruno A, Mhaisalkar S 2019 ACS Appl. Mater. Interfaces 11 34178Google Scholar

    [8]

    Qiu W, Paetzold U W, Aernouts T, Debucquoy M, Gehlhaar R, Poortmans J 2018 Energy Environ. Sci. 11 1489Google Scholar

    [9]

    Jackson E 1995 Transactions of the Conference on the Use of Solar Energy Tucson, October 31–November 1, 1995 5 122

    [10]

    Werner J, Niesen B, Ballif C 2018 Adv. Mater. Interfaces 17 00731

    [11]

    Kohnen E 2020 European PV Solar Energy Conference and Exhibition (EUPVSEC) Lisbon, Portugal, Germany, September 7–11, 2020

    [12]

    Filipic M, Loper P, Niesen B, de Wolf S, Krc J, Ballif C, Topic M 2015 Opt. Express 23 A263Google Scholar

    [13]

    Loper P, Niesen B, Moon S J, Martin de Nicolas S, Holovsky J, Remes Z, Ledinsky M, Haug F J, Yum J H, De Wolf S, Ballif C 2014 IEEE J. Photovoltaics 4 1545Google Scholar

    [14]

    Lal N N, White T P, Catchpole K R 2014 IEEE J. Photovoltaics 4 1380Google Scholar

    [15]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [16]

    Brittman S, Garnett E C 2016 J. Phys. Chem. A 120 616

    [17]

    Green M A 2015 Sol. Energy Mater. Sol. Cells 92 1305

    [18]

    Hara T, Maekawa T, Minoura S, Sago Y, Niki S, Fujiwara H 2014 Phys. Rev. Appl. 2 034012Google Scholar

    [19]

    Nakane A, Tampo H, Tamakoshi M, Fujimoto S, Kim K M, Kim S, Shibata H, Niki S, Fujiwara H 2016 J. Appl. Phys. 120 61

    [20]

    Nakane A, Fujimoto S, Fujiwara H 2017 J. Appl. Phys. 122 20

    [21]

    Altazin S, Stepanova L, Lapagna K, Losio P, Ruhstaller B 2018 Opt. Express 26 A579Google Scholar

    [22]

    Chen D, Manley P, Tockhorn P, Eisenhauer D, Jäger K 2018 J. Photonics Energy 8 2

    [23]

    Jacobs D A, Langenhorst M, Sahli F, Richards B S, Paetzold U W 2019 J. Phys. Chem. Lett. 10 3159Google Scholar

    [24]

    Askari S A, Kumar M, Das M K 2018 Semicond. Sci. Technol. 33 115003Google Scholar

    [25]

    Guang T Y, Pei Q G, Paul, Procel, Gianluca, Limodio, Arthur, Weeber 2018 Sol. Energy Mater. Sol. Cells 186 13

    [26]

    Park H, Lee Y J, Shin M, Lee Y J, Lee J, Park C, Yi 2018 Curr. Photovoltaics Research 4 102

    [27]

    Borah C K, Tyagi P K, Kumar S, Patel K 2018 Comput. Mater. Sci. 151 65Google Scholar

    [28]

    Santbergen R, Uzu H, Yamamoto K, Zeman M 2019 IEEE J. Photovoltaics PP 1

    [29]

    Macqueen R W, Martin L, Jens N, Mathias M, Clemens G, Sara J C, Klaus J G, Tayebjee M J Y, Schmidt T W, Bernd R 2018 Mater. Horiz. 5 1065Google Scholar

    [30]

    Nico T, Oliver H H, Christoph G J, Benedikt B S 2018 Opt. Express 2 6

    [31]

    Solar Energy Systems, Johannes E, Nico T, Habtamu G https://pvlighthouse.com.au/cms/simulation-programs/optos [2020-10-23]

    [32]

    JCMsuite, Jservice http://www.jservice.com.cn/sciencenews/jcmsuite/ [2020-10-23]

    [33]

    Ernst M, Holst H, Winter M, Altermatt P P 2016 Sol. Energy Mater. Sol. Cells 157 913Google Scholar

    [34]

    Bird R E, Riordan C 1986 J. Climate Appl. Meteor. 25 87Google Scholar

    [35]

    Mcintosh K R, Cotsell J N, Norris A W, Powell N E, Ketola B M 2010 Photovoltaic Specialists Conference Hawaii, June 20–25, 2010 p269

    [36]

    Baker-Finch S C, Mcintosh K R 2010 Photovoltaic Specialists Conference (PVSC) December 17–19, 2010 p2184

    [37]

    Eisenlohr J, Tucher N, Hn O, Hauser H, Peters M, Kiefel P, Goldschmidt J C, BläSi B 2015 Opt. Express 23 A502Google Scholar

    [38]

    Tucher N, Eisenlohr J, Kiefel P, Höhn O, Bläsi B 2015 Opt. Express 23 A1720Google Scholar

    [39]

    Basore P A 2020 IEEE J. Photovoltaics 10 905Google Scholar

    [40]

    Basore P A 2018 IEEE J. Photovoltaics 9 106

    [41]

    Simulation Software, Beat R, Daniele B http://www.fluxim.com/setfos-intro/ [2020-10-23]

    [42]

    Simulation Software, Alex N, Marc B, Koen D, Stefaan D, Johan V http://scaps.elis.ugent.be/ [2020-10-23]

    [43]

    Liu Y, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar

    [44]

    Liu Y, Sun Y, Rockett A 2012 IEEE Photovoltaic Specialists Conference Austin, USA, June 3–8, 2012 p000902

    [45]

    Liu Y, Heinzel D, Rockett A 2011 IEEE Photovoltaic Specialists Conference Orlando, USA, February 17–19, 2011 p002753

    [46]

    Liu Y, Heinzel D, Rockett A 2010 IEEE Photovoltaic Specialists Conference Honolulu, USA, June 20–25, 2010 p001943

    [47]

    Qarony W, Hossain M I, Hossain M K, Uddin M J, Haque A, Saad A R, Tsang Y H 2017 Results Phys. 7 4287Google Scholar

    [48]

    Chen G L, Han C, Yan L L, Li Y, Zhao Y, Zhang X D 2019 J. Semicond. 40 12

    [49]

    Gong J, Dai R, Wang Z, Zhang C, Yuan X, Zhang Z 2017 Mater. Res. Express 4 085005Google Scholar

    [50]

    Xu J P, Zhang R J, Zhang Y, Wang Z Y, Chen L, Huang Q H, Lu H L, Wang S Y, Zheng Y X, Chen L Y 2016 Phys. Chem. Chem. Phys. 18 3316Google Scholar

    [51]

    李江, 唐敬友, 裴旺, 魏贤华, 黄峰 2015 11 110702Google Scholar

    Li J, Tang J Y, Pei W, Wei X H, Huang F 2015 Acta Phys. Sin. 11 110702Google Scholar

    [52]

    Prange M P, Rehr J J, Rivas G, Kas J J, Lawson, John W 2009 Phys. Rev. E 80 15

    [53]

    Minkov A D 2000 J. Phys. D: Appl. Phys. 22 1157

    [54]

    Marquez E, Ramirez-Malo J, Villares P, Jimenez-Garay R, Ewen P J S, Owen A E 2000 J. Phys. D: Appl. Phys. 139 535

    [55]

    Yue L, Chen H 2019 EURASIP J. Wireless Commun. 19 1474

    [56]

    Henderson D, Jacobson S H, Johnson A W 2003 Handbook of Metaheuristics (Boston: Springer) (Vol.3) p287

    [57]

    Li J C, Su J H 2012 Adv. Mater. Res. 462 33Google Scholar

    [58]

    Attia A A, El-Bana M S, Habashy D M, Fouad S S, El-Bakry M Y 2017 J. Appl. Res. Technol. 15 423

    [59]

    Bittkau K, Kirchartz T, Rau U 2018 Opt. Express 26 181

    [60]

    叶帆, 顾兵, 黄晓琴 2010 光学仪器 32 90Google Scholar

    Ye F, Gu B, Huang X Q 2010 Opt. Instrum. 32 90Google Scholar

    [61]

    李国龙, 钟景明, 王立惠, 李进, 何力军, 李海波, 高忙忙 2016 激光与光电子学进展 53 4

    Li G L, Zhong J M, Wang L H, Li J, He L J, Li H B, Gao M M 2016 Las. Optoelect. Prog. 53 4

    [62]

    Su W T, Li B, Liu D Q, Zhang F S 2007 J. Phys. D: Appl. Phys. 40 3343Google Scholar

    [63]

    周毅 2010 硕士学位论文 (北京: 中国科学院研究生院)

    Zhou Y 2010 M. S. Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [64]

    蒋和伦, 刘启能 2016 半导体光电 37 218

    Jiang H L, Liu Q N 2016 Semiconductor Optoelectronics 37 218

    [65]

    Nakanishi A, Takiguchi Y, Miyajima S 2016 Phys. Status Solidi A. ePSS 213 1997

    [66]

    Hou Y, Aydin E, Bastiani M D, Xiao C, Isikgor H F, Xue D J 2020 Science 367 1135Google Scholar

    [67]

    Jošt M, Köhnen E, Morales-Vilches A B, Lipovšek B, Jäger K, Macco B, Al-Ashouri A, Krč J, Korte L, Rech B 2018 Energy Environ. Sci. 11 3511Google Scholar

    [68]

    Tao H, Zhang W, Zhang C, Han L, Wang J, Tan B, Li Y, Kan C 2019 Opt. Commun. 56 112

    [69]

    Manzoor S, Yu Z J, Ali A, Ali W, Bush K A, Palmstrom A F, Bent S F, Mcgehee M D, Holman Z C 2017 Sol. Energy Mater. Sol. Cells S S0927024817303288

    [70]

    Hou F H, Han C, Isabella O, Yan L L, Shi B, Chen J, An S C, Zhou Z, Huang W, Ren H Z, Zhao Y, Zhang X D 2018 Nano Energy 56 234

    [71]

    Kohnen E, Jot M, Morales-Vilches A B, Tockhorn P, Al-Ashouri A, Macco B, Kegelmann L, Korte L, Rech B, Schlatmann R 2019 Sustainable Energy Fuels 3 1995Google Scholar

    [72]

    Bett A J, Winkler K M, Bivour M 2019 ACS Appl. Mater. Interfaces 11 45796Google Scholar

    [73]

    Jager K, Korte L, Rech B, Albrecht S 2017 Opt. Express 25 12

    [74]

    Salman M, Jakob H, Kevin A B, Axel F P, Joe C, Zhengshan J Y, Stacey F B, Michael D M, Zachary C H 2018 Opt. Express 26 27441

    [75]

    Santbergen R, Mishima R, Meguro T, Hino M, Uzu H, Blanker J, Yamamoto K, Zeman M 2016 Opt. Express 24 A1288Google Scholar

    [76]

    Mazzarella L, Werth M, Jäger K, Jošt M, Stannowski B 2018 Opt. Express 26 103

    [77]

    Schneider B W, Lal N N, Baker-Finch S, White T P 2014 Opt. Express 22 Suppl 6 A1422

    [78]

    Chen B, Yu Z J, Manzoor S, Manzoor S, Wang S, Weigand W, Yu Z, Yang G, Ni Z, Dai X, C.Holman Z, Huang J 2020 Joule 4 850Google Scholar

    [79]

    Wang D L, Cui H J, Hou G J, Zhu Z G, Yan Q B, Su G 2016 Sci. Rep. 6 18922Google Scholar

  • [1] Yao Mei-Ling, Liao Ji-Xing, Lu Hao-Feng, Huang Qiang, Cui Yan-Feng, Li Xiang, Yang Xue-Ying, Bai Yang. Key issues and solutions affecting efficiency and stability of perovskite/heterojunction tandem solar cells. Acta Physica Sinica, 2024, 73(8): 088801. doi: 10.7498/aps.73.20231977
    [2] Xu Chang, Zheng Dexu, Dong Xinrui, Wu SaJian, Wu MingXing, Wang Kai, Liu Shengzhong(Frank). Research progress of perovskite-based triple-junction tandem solar cells. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241187
    [3] Han Fei, Jiang Zhou, Wang Chen, Zhou Hua, Shen Xiang-Qian. Optical enhancement of perovskite solar cells by metallic nano-patterns. Acta Physica Sinica, 2024, 73(16): 168801. doi: 10.7498/aps.73.20240607
    [4] Fang Zheng, Zhang Fei, Qin Xiao-Jun, Yang Liu, Jin Yong-Bin, Zhou Yang-Ying, Wang Xing-Tao, Liu Yun, Xie Li-Qiang, Wei Zhan-Hua. Four-terminal perovskite/silicon series solar cells with 28% efficiency achieved by suppressing edge recombination. Acta Physica Sinica, 2023, 72(5): 057302. doi: 10.7498/aps.72.20222209
    [5] Zhang Mei-Rong, Zhu Zeng-Wei, Yang Xiao-Qin, Yu Tong-Xu, Yu Xiao-Qi, Lu Di, Li Shun-Feng, Zhou Da-Yong, Yang Hui. Research progress of perovskite/crystalline silicon tandem solar cells with efficiency of over 30%. Acta Physica Sinica, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [6] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [7] Zhao Song, Zhou Hua, Wang Shu-Ying, Han Fei, Jiang Si-Han, Shen Xiang-Qian. Design of high efficiency perovskite/silicon tandem solar cells based on plasmonic enhancement of metal nanosphere. Acta Physica Sinica, 2022, 71(3): 038801. doi: 10.7498/aps.71.20211585
    [8] Zhao Shi-Hang, Zhang Yuan, Lü Si-Yuan, Cheng Shao-Bo, Zheng Chang-Lin, Wang Lu-Xia. Numerical simulation of strong coupling between silver nanorod and dielectric layer detected by electron energy loss spectrum. Acta Physica Sinica, 2022, 71(14): 147302. doi: 10.7498/aps.71.20220194
    [9] Ji Yang, Chen Mei-Ling, Huang Xun, Wu Yong-Zheng, Lan Bing. Simulation of random photon loss in boson sampling of different optical networks. Acta Physica Sinica, 2022, 71(19): 190301. doi: 10.7498/aps.71.20220331
    [10] Gan Yong-Jin, Jiang Qu-Bo, Qin Bin-Yi, Bi Xue-Guang, Li Qing-Liu. Carrier transport layers of tin-based perovskite solar cells. Acta Physica Sinica, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [11] Design of high efficiency perovskite/silicon tandem solar cells based on the plasmonic enhancement of metal nanosphere. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211585
    [12] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [13] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [14] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [15] Chen Jun-Fan, Ren Hui-Zhi, Hou Fu-Hua, Zhou Zhong-Xin, Ren Qian-Shang, Zhang De-Kun, Wei Chang-Chun, Zhang Xiao-Dan, Hou Guo-Fu, Zhao Ying. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells. Acta Physica Sinica, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [16] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [17] Chen Pei-Zhuan, Hou Guo-Fu, Suo Song, Ni Jian, Zhang Jian-Jun, Zhang Xiao-Dan, Zhao Ying. Simulation, design and fabrication of one-dimensional photonic crystal back reflector for silicon thin film solar cell. Acta Physica Sinica, 2014, 63(12): 128801. doi: 10.7498/aps.63.128801
    [18] Huang Qian, Zhang De-Kun, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Research on reduction of parasitic absorption caused by surface plasmon polariton. Acta Physica Sinica, 2012, 61(21): 217301. doi: 10.7498/aps.61.217301
    [19] Song Yang, Gao Zhi-Hua, Li Tao, Yang Hai-Feng, Zhou Chun-Lan, Liu Zhen-Gang, Wang Wen-Jing, Duan Ye, Li You-Zhong. Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells. Acta Physica Sinica, 2011, 60(9): 098801. doi: 10.7498/aps.60.098801
    [20] Fu Zheng-Ping, Lin Feng, Zhu Xing. Numerical study on the optical absorption of one dimension metallic gratings. Acta Physica Sinica, 2011, 60(11): 114213. doi: 10.7498/aps.60.114213
Metrics
  • Abstract views:  18392
  • PDF Downloads:  898
  • Cited By: 0
Publishing process
  • Received Date:  23 September 2020
  • Accepted Date:  14 October 2020
  • Available Online:  24 February 2021
  • Published Online:  05 March 2021

/

返回文章
返回
Baidu
map