Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of passivation layer technology for crystalline silicon solar cells

YUAN Heze CHEN Xinliang LIANG Bingquan SUN Aixin WANG Xuejiao ZHAO Ying ZHANG Xiaodan

Citation:

Research progress of passivation layer technology for crystalline silicon solar cells

YUAN Heze, CHEN Xinliang, LIANG Bingquan, SUN Aixin, WANG Xuejiao, ZHAO Ying, ZHANG Xiaodan
cstr: 32037.14.aps.74.20241292
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With the rapid development of photovoltaic technology, crystalline silicon (c-Si) solar cells, as the mainstream photovoltaic devices, have received significant attention due to their excellent performances. In particular, silicon heterojunction (SHJ) solar cells, tunnel oxide passivated contact (TOPCon), and passivated emitter and rear cell (PERC) represent the cutting-edge technologies in c-Si solar cells. The surface passivation layer of crystalline silicon solar cells, as one of the key factors to improve cell performances, has been closely linked to the development of crystalline silicon solar cells. Due to the complex mechanism of passivation layer and the high requirements of experimental research, achieving high quality surface passivation is challenging. In this paper, the key issues and research progress of interface passivation technologies for SHJ, TOPCon, and PERC solar cells are comprehensively reviewed. Firstly, the research progress of key technological breakthrough in SHJ solar cell is reviewed systematically, and the influences of growth conditions and doping layer on the passivation performances of SHJ solar cell are discussed in detail. Secondly, the important strategies and research achievements for improving the passivation performances of TOPCon and PERC solar cells in the past five years are systematically described. Finally, the development trend of passivation layer technology is prospected. This review provides valuable insights for improving future technology and enhancing performance of c-Si solar cells.
      Corresponding author: CHEN Xinliang, cxlruzhou@163.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB4200102) and the Natural Science Foundation of Tianjin, China (Grant No. 21JCYBJC00270).
    [1]

    Renewables 2023 Analysis and forecasts to 2028, Yasmina A, Ana A B, Piotr B https://www.iea.org/reports/renewables-2023 [2024-9-5]

    [2]

    Renewables 2022 Yasmina A, Heymi B, Trevor C https://www.iea.org/reports/renewables-2022 [2024-9-5]

    [3]

    Singh G K 2013 Energy 53 1Google Scholar

    [4]

    Shen W Z, Zhao Y X, Liu F 2022 Front. Energy 16 1Google Scholar

    [5]

    Breaking through 24%, Chang J https://www.hengdian.com/zh-cn/news/detail-10754 [2024-9-5]

    [6]

    Allen T G, Bullock J, Yang X B, Javey A, De Wolf S 2019 Nat. Energy 4 914Google Scholar

    [7]

    Dullweber T, Schmidt J 2016 IEEE J. Photovolt. 6 1366Google Scholar

    [8]

    Rise to 26.89%, jinkosolar https://www.jinkosolar.com/site/newsdetail/1748 [2024-9-5]

    [9]

    Ullah H, Czapp S, Szultka S, Tariq H, Qasim U B, Imran H 2023 Energies 16 715Google Scholar

    [10]

    Ma S, Du D X, Ding D, Gao C, Li Z P, Wu X Y, Zou S, Su X, Kong X Y, Liao B, Shen W Z 2024 Sol. Energ. Mat. Sol. C. 275 113024Google Scholar

    [11]

    Schmidt J, Peibst R, Brendel R 2018 Sol Energ. Mat. Sol. C. 187 39Google Scholar

    [12]

    Global News At 26.81%, LONGi https://www.longi.com/en/news/propelling-the-transformation/ [2024-9-5]

    [13]

    Taguchi M, Yano, A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96Google Scholar

    [14]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovolt. 4 1433Google Scholar

    [15]

    Adachi D, Hernández J L, Yamamoto K 2015 Appl. Phys. Lett. 107 233506Google Scholar

    [16]

    Haschke J, Dupré O, Boccard M, Ballif C 2018 Sol. Energ. Mat. Sol. C. 187 140Google Scholar

    [17]

    陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华 2015 64 198801Google Scholar

    Chen J H, Yang J, Shen Y J, Li F, Chen J W, Liu H X, Xu Y, Mai Y H 2015 Acta Phys. Sin. 64 198801Google Scholar

    [18]

    Schuttauf J W A, van der Werf K H M, Kielen I M, Kielen I M, van Sark W G J H M, Rath J K, Schropp R E I 2011 Appl. Phys. Lett. 98 153514Google Scholar

    [19]

    肖有鹏, 王涛, 魏秀琴, 周浪 2017 66 108801Google Scholar

    Xiao Y P, Wang T, Wei X Q, Zhou L 2017 Acta Phys. Sin. 66 108801Google Scholar

    [20]

    Kerr M J, Cuevas A, Sinton R A 2002 J. Appl. Phys. 91 399Google Scholar

    [21]

    Nagel H, Berge C, Aberle A G 1999 J. Appl. Phys. 86 6218Google Scholar

    [22]

    Panigrahi J, Komarala V K 2021 J. Non-Cryst. Solids 574 121166Google Scholar

    [23]

    Shi C H, Shi J J, Guan Z S, Ge J 2023 Materials 16 3144Google Scholar

    [24]

    沈文忠, 高超, 李正平 2023 钙钛矿/晶硅异质结叠层太阳电池 (北京: 科学出版社)第45页

    Shen W Z, Gao C, Li Z P 2023 Perovskite/Silicon-Heterojunction Tandem Solar Cells (Beijing: Science Press) p45

    [25]

    Tanaka M, Taguchi M, Matsuyama T, Sawada T, Tsuda S, NakanoS, Hanafusa H, Kuwano Y 1992 Jpn. J. Appl. Phys. 31 3518Google Scholar

    [26]

    De Wolf S, Kondo M 2007 Appl. Phys. Lett. 90 042111Google Scholar

    [27]

    Chu Y H, Lee C C, Chang T H, Chang S Y, Chang J Y, Li T, Chen I C 2014 Thin Solid Films 570 591Google Scholar

    [28]

    Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62Google Scholar

    [29]

    Liu W, Zhang L, Chen R, Meng F, Guo W, Bao J, Liu Z 2016 J. Appl. Phys. 120 175301Google Scholar

    [30]

    Wronski C R, Collins R W, Pearce J M, Koval R J, Ferlauto A S, Ferreira G M, Chen C 2002 NREL/SR 520 32692Google Scholar

    [31]

    Wang T H, Iwaniczko E, Page M R, Levi D H, Yan Y, Branz H M, Wang Q 2006 Thin Solid Films 501 284Google Scholar

    [32]

    Ruan T Y, Qub M H, Qu X L, Ru X N, Wang J Q, He Y C, Zheng K, Lin B H H F, Xu X X, Zhang Y Z, Yan H 2020 Thin Solid Films 711 138305Google Scholar

    [33]

    Lee K S, Yeon C B, Yun S J, Jung K H, Lima J W 2014 ECS Solid State Letters 3 33Google Scholar

    [34]

    Zeng Q G, Li L W, Meng H C, Wu X Y, Wei X Q, Zhou L 2024 J Mater. Sci: Mater. Electron. 35 476Google Scholar

    [35]

    Peng C W, He C R, Wu H F, Huang S, Yu C, Su X D, Zou S 2024 Sol. Energ. Mat. Sol. C 273 112952Google Scholar

    [36]

    Jiang K, Yang Y H, Yan Z, Huang S L, Li X D, Li Z F, Zhou Y N, Zhang L P, Meng F Y, Liu Z X, Liu W Z 2022 Sol. Energ. Mat. Sol. C 243 111801Google Scholar

    [37]

    Soman A, Das U K, Hegedus S S 2023 ACS Appl. Electron. Mater. 5 803Google Scholar

    [38]

    Morales-Vilches A B, Wang E C, Henschel T, Kubicki M, Cruz A, Janke S, Korte L, Schlatmann R, Stannowski B 2020 Phys. Status. Solidi. A 217 1900518Google Scholar

    [39]

    Ru X N, Qu M H, Wang J Q, Ruan T Y, Yang M, Peng F G, Long W, Zheng K, Yan H, Xu X X 2020 Sol. Energ. Mat. Sol. C. 215 110643Google Scholar

    [40]

    Liu C S, Wu C Y, Chen I W, Lee H C, Hong L S 2013 Prog. Photovolt: Res. Appl. 21 326Google Scholar

    [41]

    Page M R, Iwaniczko E, Xu Y Q, Roybal L, Hasoon F, Wang Q, Crandall R S 2011 Thin Solid Films 519 4527Google Scholar

    [42]

    He J, Li W, Wang Y, Mu J L, An K, Chou X J 2015 Mater. Lett. 161 175Google Scholar

    [43]

    Pandey A, Bhattacharya S, Panigrahi J, Mandal S, Komarala V K 2022 Phys. Status Solidi A 219 2200183Google Scholar

    [44]

    Nunomura1 S, Sakata I, Misawa T, Kawai S, Kamataki K, Koga K, Shiratani M 2023 Jpn. J. Appl. Phys. 62 SL1027Google Scholar

    [45]

    Macco B, Melskens J, Podraza N J, Arts K, Pugh C, Thomas O, Kessels W M M 2017 J. Appl. Phys 122 035302Google Scholar

    [46]

    Wu Z P, Zhang L P, Chen R F, Liu W Z, Li Z F, Meng F Y, Liu Z X 2019 Appl. Surf. Sci. 475 504Google Scholar

    [47]

    Tomasil A, Sahli F, Fannil L, Seif J P, de Nicolas S M, Holm N, Geissblihler J, Paviet-Salomon B, Loper P, Nicolay S, De Wolf S, Ballif C 2016 IEEE. J. Photovolt. 6 17Google Scholar

    [48]

    Morell G, Katiyar R S, Weisz S Z, Jia H, Shinar J, Balberg I 1995 J. Appl. Phys. 78 5120Google Scholar

    [49]

    Iqbal Z, Veprek S 1982 J. Phys. C: Solid State Phys. 15 377Google Scholar

    [50]

    De Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109Google Scholar

    [51]

    Biegelsen D K, Street R A, Tsai CC, Knights J C 1979 Phys. Rev. B 20 4839Google Scholar

    [52]

    Beyer W, Wagner H 1983 J. Non-Cryst. Solids 59 161Google Scholar

    [53]

    Yabumoto N, Saito K, Morita M, Ohmi T 1991 Jpn. J. Appl. Phys. 30 L419Google Scholar

    [54]

    Beyer W, Wagner H, Chevallier J, Reichelt K 1982 90 145

    [55]

    Beyer W 1991 Phys. Rev. B Condens. Matter 170 105Google Scholar

    [56]

    Beyer W, Wagner H, Mell H 1981 Solid State. Commun. 39 375Google Scholar

    [57]

    Street R A, Tsai CC, Kakalios J, Jackson W B 1987 Philos. Mag. B 56 305Google Scholar

    [58]

    Nasuno Y, Kondo M, Matsuda A, Fukuhori H, Kanemitsu Y 2002 Appl. Phys. Lett. 81 3155Google Scholar

    [59]

    Dreon J, Jeangros Q, Cattin J, Haschke J, Antognini L, Ballif C, Boccard M 2020 Nano Energy 70 104495Google Scholar

    [60]

    Holman Z C, Descoeudres A, Barraud L, Fernandez F Z, Sei J P, De Wolf S, Ballif C 2012 IEEE J. Photovolt. 2 7Google Scholar

    [61]

    Ding K N, Aeberhard U, Finger F, Rau U 2013 J. Appl. Phys. 113 134501Google Scholar

    [62]

    Boccard M, Holman Z C 2015 J. Appl. Phys. 118 065704Google Scholar

    [63]

    Jiang K, Liu W Z, Yang Y H, Yan Z, Huang S L, Li Z F, Li X D, Zhang L P, Liu Z X 2022 J. Mater. Sci.: Mater. Electron. 33 416Google Scholar

    [64]

    Fujiwara H, Kaneko T, Kondo M 2007 Appl. Phys. Lett. 91 133508Google Scholar

    [65]

    Mews M, Liebhaber M, Rech B, Korte L 2015 Appl. Phys. Lett. 107 013902Google Scholar

    [66]

    Wu Z P, Zhang L P, Liu W Z, Chen R F, Li Z F, Meng F Y, Liu Z X 2020 J. Mater. Sci. Mater. El. 31 9468Google Scholar

    [67]

    Wen L L, Zhao L, Wang G H, Jia X J, Xu X H, Qu S Y, Li X T, Zhang X Y, Xin K, Xiao J H, Wang W J 2023 Sol. Energ. Mat. Sol. C. 258 112429Google Scholar

    [68]

    Wu X Y, Wang X T, Lv R R, Song H, Yu Y J, Sen C D, Cheng Y H, Khan M U, Ciesla A, Xu T, Zhang G C, Hoex B 2025 Sol. Energ. Mat. Sol. C. 282 113325Google Scholar

    [69]

    Sinha A, Qian J D, Moffitt S L, Hurst K, Terwilliger K, Miller D C, Schelhas L T, Hacke P 2023 Prog. Photovoltaics 31 36Google Scholar

    [70]

    Yang L, Hu Z C, He Q Y, Liu Z K, Zeng Y H, Yang L F, Yu X G, Yang D R 2024 Sol. Energ. Mat. Sol. C 275 113022Google Scholar

    [71]

    Yang J L, Tang Y H, Zhou C L, Chen S N, Cheng S Z, Wang L C, Zhou S, Jia X J, Wang W J, Xu X H, Xiao J H, Wei W W 2024 Sol. Energ. Mat. Sol. C 276 113062Google Scholar

    [72]

    Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C 120 270Google Scholar

    [73]

    Padi S P, Khokhar M Q, Chowdhury S, Cho E C, Yi J 2021 Trans. Electr. Electro. 22 557Google Scholar

    [74]

    Wang Q Q, Wu W P, Yuan N Y, Li Y L, Zhang Y, Ding J N 2020 Sol. Energ. Mat. Sol. C 208 110423Google Scholar

    [75]

    Huang J B, Zhao Z C, Li M, Chen J, Zhou X R, Deng X X, Li B, Shen K L, Cheng Q Y, Cai X W 2023 Sol. Energ. Mat. Sol. C. 260 112489Google Scholar

    [76]

    Xing H Y, Liu Z K, Yang Z H, Liao M D, Wu Q Q, Lin N, Liu W, Ding C F, Zeng Y H, Yan B J, Ye J C 2023 Sol. Energ. Mat. Sol. C 257 112354Google Scholar

    [77]

    Yang L, Ou Y L, Lv X, Lin N, Zeng Y H, Hu Z C, Yuan S, Ye J C, Yu X G, Yang D R 2024 Energy Environ. Mater. 7 e12795Google Scholar

    [78]

    钱金忠, 左克祥, 王安, 杜东亚, 凡金星, 高纪凡 2023 太阳能 353 9Google Scholar

    Qian J Z, Zuo K X, Wang A, Du D Y, Fan J X, Gao J F 2023 Solar Energy 353 9Google Scholar

    [79]

    Ghosh D K, Das G, Bose S, Mukhopadhyay S, Sengupta A 2024 Energy Technol. 12 2400238Google Scholar

    [80]

    Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2017 Sol. Energ. Mat. Sol. C 173 96Google Scholar

    [81]

    Yan D, Cuevas A, Phang S P, Wan Y, Macdonald D 2018 Appl. Phys. Lett. 113 061603Google Scholar

    [82]

    Richter A, Benick J, Müller R, Feldmann F, Reichel C, Hermle M, Glunz S W 2018 Prog. Photovolt. Res. Appl. 26 579Google Scholar

    [83]

    Richter A, Müller R, Benick J, Feldmann F, Steinhauser  B, Reichel C, Fell A, Bivour M, Hermle M, Glunz S W 2021 Nat. Energy 6 429Google Scholar

    [84]

    Yu H L, Liu W, Du H J, Liu Z K, Liao M D, Song N, Yang Z H, Zeng Y H, Ye J C 2024 Nano Energy 125 109556Google Scholar

    [85]

    Ma D, Liu W, Xiao M J, Yang Z H, Liu Z K, Liao M D, Han Q L, Cheng H, Xing H Y, Ding Z T, Yan B J, Wang Y D, Zeng Y H, Ye J C 2022 Sol. Energy 242 1Google Scholar

    [86]

    Du H J, Lin Y R, Wang Z X, Liao M D, Liu Z K, Luo X J, Cao Y H, Fu L M, Liu W, Yan B J, Yang Z H, Yuan Z Z, Zeng Y H, Ye J C 2024 Mat. Sci. Semicon. Proc. 170 107969Google Scholar

    [87]

    Li W K, Zhou R, Wang Y K, Su Q F, Yang J, Xi M, Liu Y S 2024 Appl. Surf. Sci. 673 160835Google Scholar

    [88]

    Wang Q Q, Gu S W, Guo K Y, Peng H, Wu W P, Ding J N 2024 Sol. Energ. Mat. Sol. C. 273 112959Google Scholar

    [89]

    Blakers A W, Wang A, Milne A M, Zhao J, Green M A 1989 Appl. Phys. Lett. 55 1363Google Scholar

    [90]

    Saint-Cast P, Benick J, Kania D, Weiss L, Hofmann M, Rentsch J, Preu R, Glunz S W 2010 IEEE Electron. Device Lett. 31 695Google Scholar

    [91]

    Töfflingera J A, Laadesb A, Leendertza C, Montañeza L M, Kortea L, Stürzebecher U, Sperlichc H P, Recha B 2014 Energy Procedia 55 845Google Scholar

    [92]

    Gatz S, Hannebauer H, Hesse R, Werner F, Schmidt A, Dullweber T, Schmidt J, Bothe K, Brendel R 2011 Phys. Status Solidi Rapid Res. Lett. 5 147Google Scholar

    [93]

    Kim J, Ju M, Kim Y, Yi J 2022 Mat. Sci. Semicon. Proc. 148 106833Google Scholar

    [94]

    Tong R, Zhang S C, Liu D M, Zhang W P, Wang Y T, Liu X F 2021 Sol. Energ. Mat. Sol. C. 231 111319Google Scholar

    [95]

    Liu P K, Cheng Y L, Wang L K 2020 Int. J. Photoenergy 2020 6686797Google Scholar

    [96]

    Kashyap S, Madan J, Pandey R, Ramanujam J 2022 Opt. Mater. 128 112399Google Scholar

    [97]

    Mouri T K, Upadhyaya A, Rohatgi A, Ok Y W, Hua A, Hauschild D, Weinhardt L, Heske C, Upadhyaya V, Rounsaville B, Shafarman W N, Das U K 2023 IEEE 50th Photovoltaic Specialists Conference (PVSC) San Juan, PR, USA, June 11–16, 2023 p1

    [98]

    Jang J S, Kim H S, Karade V C, Park S W, Kim C W, Kim J H 2024 J. Alloys Compd. 970 172691Google Scholar

    [99]

    Wei P F, Tong R, Liu X F, Wei Y, Zhang Y A, Liu X, Dai J, Yin H P, Liu D M 2024 Mat. Sci. Semicon. Proc. 170 107947Google Scholar

  • 图 1  (a), (b) PERC太阳电池结构[7]和制造流程图[6]; (c), (d) TOPCon太阳电池结构和制造流程图[9]; (e), (f) SHJ太阳电池结构图和制造流程图[16]

    Figure 1.  (a), (b) PERC solar cell structure[7] and manufacturing process diagram[6]; (c), (d) TOPCon solar cell structure and manufacturing process diagram[9]; (e), (f) SHJ solar cell structure diagram and manufacturing process diagram[16].

    图 2  (a) c-Si材料原子结构示意图, $ \left\langle{110}\right\rangle $晶向[24]; (b) a-Si材料原子结构示意图[24]; (c) a-Si:H材料原子结构示意图[24]; (d) a-Si:H钝化c-Si结构示意图

    Figure 2.  (a) Schematic diagram of c-Si material atomic structure, $ \left\langle{110}\right\rangle $ crystal orientation[24]; (b) schematic diagram of a-Si material atomic structure[24]; (c) schematic diagram of a-Si:H material atomic structure[24]; (d) schematic diagram of a-Si:H passivated c-Si structure.

    图 3  (a) 薄膜的R*CH随氢稀释比RH ($ {R_{\text{H}}} = {{{f_{{{\text{H}}_2}}}} {/} {{f_{{\text{Si}}{{\text{H}}_4}}}}} $)的变化, 灰色区域是非晶-微晶过渡区[27]; (b) HPT前后的过渡区的i-a-Si:H与c-Si(n)的交界面的HR-TEM图像, 以及HPT前后的低密度的本征非晶硅的傅里叶红外光谱[29]; (c) 对于各种a-Si:H钝化膜采用连续热退火工艺(Δn = 1015 cm–3)的平均有效τeff和iVoc[33]; (d) 不同TRH下的单、双层i-a-Si:H结构的TEM图像[33]; (e) 单层钝化的SHJ太阳电池结构图[34]; (f)双层钝化的SHJ太阳电池结构图[35]

    Figure 3.  (a) Changes of microstructural factor (R*) and hydrogen content (CH) of the film with hydrogen dilution ratio $ ({R_{\text{H}}} = {{{f_{{{\text{H}}_2}}}} {/} {{f_{{\text{Si}}{{\text{H}}_4}}}}}) $, where the gray area represents the amorphous-microcrystalline transition region[27]; (b) HR-TEM images of the interface between i-a-Si and c-Si in the transition zone before and after HPT, as well as Fourier transform infrared spectra of low-density intrinsic amorphous silicon before and after HPT[29]; (c) the average effective τeff and iVoc of various a-Si:H passivation films using continuous thermal annealing process (Δn =1015 cm–3)[33]; (d) TEM images of single-layer and double-layer i-a-Si:H structures at various T and RH levels[33]; (e) structure diagram of SHJ solar cell with single-layer passivation[34]; (f) structure diagram of SHJ solar cell with double-layer passivation[35].

    图 4  (a) 不同沉积速率的i-a-Si:H相变为c-Si的临界温度[40]; (b)两种沉积速率下不同衬底温度的有效τeff[40]; (c) 不同i层厚度条件下的I-V性能[41]; (d)不同i层厚度的SHJ太阳电池的内量子效率(IQE)图, 其中参考电池为p型扩散结电池[41]; (e) 不同氢气流量(fH)下的τeffCH, 插图显示了钝化结构[42]; (f) 不同RH下i-a-Si:H钝化c-Si的有效τeff, 且τeff随退火温度变化[27]; (g) 上图为不同FR下i-a-Si:H层钝化c-Si的τeff, 下图为30 cm/min (标准状况)的FR放电的光学发射光谱(OES). 插图为在不同气体FR下的SiH*的积分强度[43]; (h) 不同衬底温度T下的τeff和iVoc[44]; (i) c-Si/a-Si:H界面能带图和载流子动力学示意图, 左图和右图分别对应宽带隙(Eg)的a-Si:H和窄带隙的a-Si:H[44]

    Figure 4.  (a) Critical temperatures for the phase transition from i-a-Si:H to c-Si at different deposition rates[40]; (b) effective τeff at various substrate temperatures for two deposition rates[40]; (c) I-V performance under different i-layer thicknesses[41]; (d) internal quantum efficiency (IQE) maps of SHJ solar cells with various i-layer thicknesses, with a reference cell being a p-type diffused junction cell[41]; (e) τeff and CH under different hydrogen flow rates (fH), inset showing the passivation structure[42]; (f) effective τeff for i-a-Si:H passivating c-Si under different RH, with τeff varying with annealing temperature[27]; (g) τeff of c-Si passivated by i-a-Si:H layers at different FR (up), optical emission spectrum (OES) spectrum of FR discharge at 30 cm/min under standard temperature and pressure (down), the inset shows the integrated intensity of SiH* under different FR[43]; (h) τeff and iVoc at various substrate temperatures T[44]; (i) energy band diagram and carrier dynamics schematic at the c-Si/a-Si:H interface, with the left and right figures corresponding to wide bandgap (Eg) a-Si:H and narrow bandgap a-Si:H, respectively[44].

    图 5  (a) 在退火过程中a-Si:H基体内部微观变化的3个阶段(I, II, III)示意图, 每个阶段分为3个部分, 分别为c-Si/a-Si:H界面、a-Si:H膜的基体内部和a-Si:H表面处, 且c-Si/a-Si:H界面处的椭圆体表示未钝化的悬挂键[45]; (b) 不同注入水平下, 有I-HPT和无HPT的有效寿命τeff的比较[37]; (c) 左图为微波处理的前后τeff的变化, 右图为归一化τeff与微波处理周期数的关系[34]

    Figure 5.  (a) Schematic illustration of three stages (I, II, III) of microstructural changes within the a-Si:H matrix during annealing, each stage divided into three parts: c-Si/a-Si:H interface, interior of the a-Si:H film, and a-Si:H surface, ellipsoids at the c-Si/a-Si:H interface represent unpassivated dangling bonds[45]; (b) comparison of effective lifetimes (τeff) between I-HPT and No-HPT at different injection levels[37]; (c) left: changes in τeff before and after microwave treatment; right: relationship between normalized τeff and the number of microwave treatment cycles[34].

    图 6  (a) 用i-a-Si:H/n-a-Si:H钝化的c-Si(n)的τeff值与n-a-Si:H厚度的关系[46]; (b) n型SHJ太阳电池能带图[23]; (c) 左图对应于10 nm厚度的致密i-a-Si:H, 分别被0, 6和10 nm厚度的n-a-Si:H沉积后的傅里叶红外光谱(FTIR), 右图为对应于10 nm厚度的低密度i-a-Si:H, 分别被0, 6和10 nm厚度的n-a-Si:H沉积后的FTIR[46]; (d) 上图为在不同厚度下n-a-Si:H沉积过程中, 两种密度的i-a-Si:H的介电函数虚部的强度, 下图为拉曼强度的变化[46]; (e) 分步退火温度对钝化质量的影响, 由在Fz-Si(n)表面上所沉积的本征和掺杂a-Si:H薄膜的有效表面复合速率(Seff)和τeff表示[50]; (f)线性梯度退火对a-Si:H薄膜中H2逸出率的影响, 上方图为c-Si表面的H2逸出率数据; 中间图为单层a-Si:H薄膜的H2逸出率数据, 下方图为堆叠膜的H2逸出率数据[50]; (g) 测试结构的深度与硼浓度的关系, 插图为测试所用结构, 且退火条件与图(e)的条件相同[50]

    Figure 6.  (a) Relationship between the τeff value of c-Si(n) passivated with i-a-Si:H/n-a-Si:H and the thickness of n-a-Si:H[46]; (b) energy band diagram of an n-type SHJ solar cell[23]; (c) Fourier transform infrared spectroscopy (FTIR) spectra of 10 nm thick dense i-a-Si:H deposited with 0, 6, and 10 nm thick n-a-Si:H, respectively (left), FTIR spectra of 10 nm thick low-density i-a-Si:H deposited with 0, 6, and 10 nm thick n-a-Si:H, respectively (right); (d) intensity of the imaginary part of the dielectric function of two densities of i-a-Si:H during n-a-Si:H deposition at various thicknesses (up), changes in Raman intensity (down)[46]; (e) impact of stepwise annealing temperatures on passivation quality, represented by the effective surface recombination velocity (Seff) and τeff of intrinsic and doped a-Si:H films deposited on Fz-Si(n) surfaces; (f) influence of linear gradient annealing on the H2 evolution rate in a-Si:H films, with upper panel showing H2 evolution rate data on c-Si surfaces, middle panel for single-layer a-Si:H films, and lower panel for stacked films; (g) depth profile of boron concentration in the tested structure shown, with the inset illustrating the tested structure used and the annealing conditions identical to those in Fig. (e)[50].

    图 7  (a) i-a-SiOx:H材料原子结构示意图; (b) i-a-SiOx:H钝化c-Si的微观结构示意图; (c) i-a-SiOx:H钝化的SHJ太阳电池的器件结构图[63]; (d)不同CO2/SiH4下的SHJ太阳电池的I-V性能[63]; (e)左图为不同Eg下的i-a-Si:H层的SHJ太阳电池的能带图(如虚线所示, ΔEV被放大并作为插图), 右图为不同Eg对SHJ电池的Jsc, Voc和FF的影响[66]; (f)优化后的3层a- SiOx:H (i0, i1, i2) 的SHJ太阳电池的I-V性能与未优化a-Si:H (i0, i1, i2) 的SHJ太阳电池的I-V性能的比较[67]; (g) 连续20 min退火后c-Si的有效τeff, 所述的钝化结构左侧图为两侧分别沉积不同$ {R_{{\text{C}}{{\text{H}}_{4}}}} $($ {R_{{\text{C}}{{\text{H}}_{4}}}} = {{{f_{{\text{C}}{{\text{H}}_{4}}}}} {/} {\left( {{f_{{\text{C}}{{\text{H}}_{4}}}} + {f_{{\text{Si}}{{\text{H}}_{4}}}}} \right)}} $) 的a-SiCx:H膜, a-SiCx:H膜的厚度为50 nm, 右侧图为背面沉积50 nm厚的a-Si:H膜, 正面沉积两层10 nm厚的本征a-SiCx:H堆叠层, 其中RCH4为0%或75%, 下方图为在适中温度下退火的第1阶段时, 这种堆叠层中氢运动的示意图(从左到右分别为0%/0%, 0%/75%, 75%/0%和75%/75%)[62]

    Figure 7.  (a) Schematic illustration of the atomic structure of i-a-SiOx:H material[63]; (b) schematic diagram of the microstructure of c-Si passivated by i-a-SiOx:H[63]; (c) device structure diagram of the i-a-SiOx:H passivated SHJ solar cell[63]; (d) I-V performance of SHJ solar cells under different CO2/SiH4 ratios[63]; (e) the left figure illustrates the band diagram of the SHJ solar cell with an a-Si:H(i) layer featuring various Eg, where the deviation of the valence band (ΔEV) is zoomed in and presented as an inset (indicated by dashed lines), the right figure demonstrates the simulated impact of different Eg values on the Jsc, Voc, and FF of the SHJ solar cell[66]; (f) comparison of the I-V performance between optimized triple-layer a-SiOx:H (i0, i1, i2) and unoptimized a-Si:H (i0, i1, i2) passivated SHJ solar cells[67]; (g) effective τeff of c-Si after continuous annealing for 20 min. the passivation structures are described as follows, the left figure shows a-SiCx:H films with different $ {R_{{\text{C}}{{\text{H}}_{4}}}} $ ($ {R_{{\text{C}}{{\text{H}}_{4}}}} = {{{f_{{\text{C}}{{\text{H}}_{4}}}}} {/} {\left( {{f_{{\text{C}}{{\text{H}}_{4}}}} + {f_{{\text{Si}}{{\text{H}}_{4}}}}} \right)}} $) deposited on both sides, with a thickness of 50 nm for the a-SiCx:H films. the right figure depicts a 50 nm thick a-Si:H film deposited on the back and a two-layer stack of 10 nm thick intrinsic a-SiCx:H films on the front, with ${R_{{\text{C}}{{\text{H}}_{4}}}} $ set at 0% or 75%, the bottom figure illustrates the schematic of hydrogen movement within this stacked layer during the first stage of annealing at a moderate temperature (from left to right was 0%/0%, 0%/75%, 75%/0%, and 75%/75%)[62].

    图 8  (a)实验批次中性能最佳的SHJ电池的I-V曲线, 以及随着DH85持续时间变化, 各组电池PCE, Jsc, Voc, FF和Rs的相对变化[68]; (b)钠离子老化试验中裸露的SHJ太阳电池参数退化百分比和钠离子老化试验前后裸露的SHJ太阳电池的光致发光(PL)图像[36]; (c) 在钠离子老化试验中, 带有80 nm厚SiOx层的SHJ太阳电池参数退化百分比和钠离子老化试验前后, 带有80 nm厚SiOx层的SHJ太阳电池的PL图像[36]; (d) SHJ太阳能电池在UV照射和LS处理循环过程中的归一化性能变化[71]

    Figure 8.  (a) I-V curve of the champion SHJ cell from the experiment batch, and relative changes in PCE, Jsc, Voc, FF, and Rs as a function of DH85 duration for each group[68]; (b) percentage degradation of parameters for exposed SHJ solar cells during sodium ion aging tests, along with Photoluminescence (PL) images of the exposed SHJ solar cells before and after the sodium ion aging tests[36]; (c) percentage degradation of parameters for SHJ solar cells with an 80-nm-thick SiOx layer during sodium ion aging tests, along with PL images of the SHJ solar cells with an 80-nm-thick SiOx layer before and after the sodium ion aging tests[36]; (d) normalized performance changes of SHJ solar cells during UV irradiation and LS treatment cycles[71].

    图 9  (a) TOPCon太阳能电池结构图[73]; (b) 载流子通过TOPCon太阳电池隧穿氧化物传输的能带图[73]; (c) TOPCon界面钝化的iVoc作为退火温度的函数, 没有隧穿氧化物(红色圆圈)的样品清楚地强调了隧穿氧化物层对于表面钝化的重要性[72]; (d) 不同通源时间下制备的 TOPCon 太阳电池的EffVoc[78]; (e) 不同厚度i-a-Si:H退火过程中磷向Si衬底中的扩散示意图, i-a-Si:H的厚度分别为0, 10, 20, 30和40 nm, 对应于对照组、G1组、G2组、G3组和G4组[10]; (f) 采用p-a-Si:H的TOPCon太阳电池示意图[84]; (g) 采用和未采用p-a-Si:H的TOPCon太阳电池的有效τeff曲线与Δn的函数关系[84]; (h) J-V特性曲线[84]; (i) EQE曲线[84]

    Figure 9.  (a) Schematic diagram of the TOPCon solar cell structure[73]; (b) energy band diagram illustrating carrier transport through the tunnel oxide in a TOPCon solar cell[73]; (c) the iVoc of TOPCon interface passivation as a function of annealing temperature, the sample without a tunneling oxide layer (red circles) clearly emphasizes the importance of the tunneling oxide layer for surface passivation[72]; (d) the Eff and Voc of TOPCon solar cells prepared under different exposure times to the dopant source[78]; (e) illustration of phosphorus diffusion into the Si substrate during the annealing process for various thicknesses of i-a-Si:H. the thicknesses of i-a-Si:H are 0, 10, 20, 30, and 40 nm, corresponding to the control group, Group G1, Group G2, Group G3, and Group G4, respectively[10]; (f) schematic of a TOPCon solar cell employing p-a-Si:H[84]; (g) effective τeff curves as a function of Δn for TOPCon solar cells with and without p-a-Si:H[84]; (h) J-V characteristic curves[84]; (i) EQE curves[84].

    图 10  (a) p型PERC太阳能电池的结构图[93]; (b) 与Al2O3和p-Si衬底相关的钝化机制[93]; (c) 5层和单层SiNx:H薄膜太阳电池的效率比较, 单层SiNx:H膜的厚度为150 nm, 而5层膜的厚度为20/10/10/10/100 nm[94]

    Figure 10.  (a) Schematic diagrams of structure of p-type PERC solar cell[93]; (b) mechanism of passivation correlated with Al2O3 and p-Si substrate[93]; (c) efficiency comparison for the solar cells with five-layer and single layer SiNx:H films. the thickness of the single-layer SiNx:H film is 150 nm, and the thicknesses for the five-layer films are 20/10/10/10/100 nm[94].

    表 1  不同RH的i-a-Si:H薄膜的特征参数[33]

    Table 1.  Characteristic parameters of i-a-Si:H thin films with different RH[33].

    RH SiH4 flow/
    sccm
    H2 flow/
    sccm
    R* τeff/μs iVoc/mV
    纯 c-Si 0.98 520
    RH = 1 40 40 0.970 8.2 538
    RH = 10 40 400 0.143 148.1 668
    RH = 25 40 1000 0.076 127.1 661
    DownLoad: CSV

    表 2  具有不同RH的界面层和覆盖层的i-a-Si:H双层钝化性能参数[33]

    Table 2.  Performance parameters of i-a-Si:H double- layer passivation with interface and cover layers with different RH[33].

    双层钝化(c-Si/界面层/覆盖层) τeff/μs iVoc/mV
    c-Si/i-a-Si:H(RH = 1)/
    i-a-Si:H(RH = 10)
    33.9 606
    c-Si/i-a-Si:H(RH = 25)/
    i-a-Si:H(RH = 10)
    138.9 665
    c-Si/i-a-Si:H(RH = 10)/
    i-a-Si:H(RH = 25)
    197.6 683
    DownLoad: CSV

    表 3  具有单层和双层钝化结构的SHJ器件性能

    Table 3.  Performance of SHJ devices with single- and double-layer passivation structures.

    结构 Jsc/(mA·cm–2) Voc/mV FF/% η/% Year Ref.
    单层 39.02 735.1 77.57 22.23 2022 [36]
    单层 36.50 718.0 77.50 20.30 2023 [37]
    单层 39.60 735.0 79.00 23.00 2024 [34]
    双层 38.90 741.0 80.60 23.20 2019 [38]
    双层 39.50 747.0 84.98 25.11 2020 [39]
    双层 40.27 749.7 85.90 25.92 2024 [35]
    DownLoad: CSV

    表 4  不同SiOx生长方法的器件应用

    Table 4.  Application of devices with different SiOx growth methods.

    生长方法 Jsc/(mA·cm–2) Voc/mV FF/% η/% Year Ref.
    热氧化 40.0 689.4 81.35 22.43 2020 [74]
    PECVD 41.43 713.2 84.55 25.06 2023 [75]
    化学氧化 41.38 730.8 81.9 24.8 2023 [76]
    臭氧氧化 41.03 702.0 83.35 24.08 2024 [77]
    DownLoad: CSV

    表 5  高性能TOPCon太阳电池结构比较[79]

    Table 5.  Comparison of high performance TOPCon solar cells structures.

    c-Si Cell structure Voc/mV Jsc/(mA·cm–2) FF/% η/% Ref.
    n Metal/SiNx+MgF2/Al2O3/p+-Siemitter/n-c-Si/SiOx/n+-poly Si
    layer/Metal(n-TOPCon)
    724.9 42.5 83.3 25.7 [80]
    p Metal/SiNx/P-doped emitter/p-c-Si/SiOx/B-doped p-poly Si
    layer/Metal(p-TOPCon)
    701 41.1 79.9 23 [81]
    p Metal/SiNx-MgF2/Al2O3/p+-Si/p-c-Si/SiOx/ 714.2 42.4 80.8 24.3 [82]
    p P-doped n-poly Si layer/Metal(TOPCoRE)Metal/SiNx/Al2O3/
    B-diffusion FSF/p-c-Si/SiOx/P-doped n-poly Si layer/
    Metal (TOPCoRE)
    732.3 42.05 84.3 26 [83]
    DownLoad: CSV

    表 6  改进TOPCon太阳电池性能的方法

    Table 6.  Methods for improving TOPCon solar cells performance.

    改善方法Jsc/(mA·cm–2)Voc/mVFF/%η/%YearRefs.
    生长两步氧化41.80707.083.024.602022[85]
    正面金属电极和硼发射极之间沉积局部p-a-Si:H42.03696.083.7624.502024[84]
    在钝化层中插入本征非晶硅(i-a-Si:H)层40.60715.082.3023.832024[10]
    利用管式PECVD制备掺C poly-Si(n+)40.81700.482.7023.642024[86]
    RS-ALD法制备高质量Al2O3薄膜736.384.0525.782024[87]
    中温光浸泡工艺42.10729.084.025.802024[88]
    DownLoad: CSV

    表 7  改进PERC太阳电池钝化性能的方法

    Table 7.  Methods for improving passivation performance of PERC solar cells.

    改善方法 Jsc/(mA·cm–2) Voc/mV FF/% η/% Year Ref.
    利用臭氧氧化制备氧化铝层 37.89 590 75.70 16.92 2020 [95]
    5层 SiNx:H 薄膜 10.273 681.63 81.19 22.56 2021 [94]
    背面以 HfO2 作为钝化材料钝化 39.67 662.9 79.26 20.84 2022 [93]
    离子注入SiOx Ny:H 40.80 686 81.54 22.80 2022 [96]
    发射极表面通过硫化氢(H2S)气体反应钝化 40.03 649 76.79 19.93 2023 [97]
    利用SiO2/Al2O3双层钝化 38.73 649 79.00 19.90 2024 [98]
    多层SiNx/SiOxNy/SiNx钝化 41.70 682 80.57 22.91 2024 [99]
    DownLoad: CSV
    Baidu
  • [1]

    Renewables 2023 Analysis and forecasts to 2028, Yasmina A, Ana A B, Piotr B https://www.iea.org/reports/renewables-2023 [2024-9-5]

    [2]

    Renewables 2022 Yasmina A, Heymi B, Trevor C https://www.iea.org/reports/renewables-2022 [2024-9-5]

    [3]

    Singh G K 2013 Energy 53 1Google Scholar

    [4]

    Shen W Z, Zhao Y X, Liu F 2022 Front. Energy 16 1Google Scholar

    [5]

    Breaking through 24%, Chang J https://www.hengdian.com/zh-cn/news/detail-10754 [2024-9-5]

    [6]

    Allen T G, Bullock J, Yang X B, Javey A, De Wolf S 2019 Nat. Energy 4 914Google Scholar

    [7]

    Dullweber T, Schmidt J 2016 IEEE J. Photovolt. 6 1366Google Scholar

    [8]

    Rise to 26.89%, jinkosolar https://www.jinkosolar.com/site/newsdetail/1748 [2024-9-5]

    [9]

    Ullah H, Czapp S, Szultka S, Tariq H, Qasim U B, Imran H 2023 Energies 16 715Google Scholar

    [10]

    Ma S, Du D X, Ding D, Gao C, Li Z P, Wu X Y, Zou S, Su X, Kong X Y, Liao B, Shen W Z 2024 Sol. Energ. Mat. Sol. C. 275 113024Google Scholar

    [11]

    Schmidt J, Peibst R, Brendel R 2018 Sol Energ. Mat. Sol. C. 187 39Google Scholar

    [12]

    Global News At 26.81%, LONGi https://www.longi.com/en/news/propelling-the-transformation/ [2024-9-5]

    [13]

    Taguchi M, Yano, A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96Google Scholar

    [14]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovolt. 4 1433Google Scholar

    [15]

    Adachi D, Hernández J L, Yamamoto K 2015 Appl. Phys. Lett. 107 233506Google Scholar

    [16]

    Haschke J, Dupré O, Boccard M, Ballif C 2018 Sol. Energ. Mat. Sol. C. 187 140Google Scholar

    [17]

    陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华 2015 64 198801Google Scholar

    Chen J H, Yang J, Shen Y J, Li F, Chen J W, Liu H X, Xu Y, Mai Y H 2015 Acta Phys. Sin. 64 198801Google Scholar

    [18]

    Schuttauf J W A, van der Werf K H M, Kielen I M, Kielen I M, van Sark W G J H M, Rath J K, Schropp R E I 2011 Appl. Phys. Lett. 98 153514Google Scholar

    [19]

    肖有鹏, 王涛, 魏秀琴, 周浪 2017 66 108801Google Scholar

    Xiao Y P, Wang T, Wei X Q, Zhou L 2017 Acta Phys. Sin. 66 108801Google Scholar

    [20]

    Kerr M J, Cuevas A, Sinton R A 2002 J. Appl. Phys. 91 399Google Scholar

    [21]

    Nagel H, Berge C, Aberle A G 1999 J. Appl. Phys. 86 6218Google Scholar

    [22]

    Panigrahi J, Komarala V K 2021 J. Non-Cryst. Solids 574 121166Google Scholar

    [23]

    Shi C H, Shi J J, Guan Z S, Ge J 2023 Materials 16 3144Google Scholar

    [24]

    沈文忠, 高超, 李正平 2023 钙钛矿/晶硅异质结叠层太阳电池 (北京: 科学出版社)第45页

    Shen W Z, Gao C, Li Z P 2023 Perovskite/Silicon-Heterojunction Tandem Solar Cells (Beijing: Science Press) p45

    [25]

    Tanaka M, Taguchi M, Matsuyama T, Sawada T, Tsuda S, NakanoS, Hanafusa H, Kuwano Y 1992 Jpn. J. Appl. Phys. 31 3518Google Scholar

    [26]

    De Wolf S, Kondo M 2007 Appl. Phys. Lett. 90 042111Google Scholar

    [27]

    Chu Y H, Lee C C, Chang T H, Chang S Y, Chang J Y, Li T, Chen I C 2014 Thin Solid Films 570 591Google Scholar

    [28]

    Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62Google Scholar

    [29]

    Liu W, Zhang L, Chen R, Meng F, Guo W, Bao J, Liu Z 2016 J. Appl. Phys. 120 175301Google Scholar

    [30]

    Wronski C R, Collins R W, Pearce J M, Koval R J, Ferlauto A S, Ferreira G M, Chen C 2002 NREL/SR 520 32692Google Scholar

    [31]

    Wang T H, Iwaniczko E, Page M R, Levi D H, Yan Y, Branz H M, Wang Q 2006 Thin Solid Films 501 284Google Scholar

    [32]

    Ruan T Y, Qub M H, Qu X L, Ru X N, Wang J Q, He Y C, Zheng K, Lin B H H F, Xu X X, Zhang Y Z, Yan H 2020 Thin Solid Films 711 138305Google Scholar

    [33]

    Lee K S, Yeon C B, Yun S J, Jung K H, Lima J W 2014 ECS Solid State Letters 3 33Google Scholar

    [34]

    Zeng Q G, Li L W, Meng H C, Wu X Y, Wei X Q, Zhou L 2024 J Mater. Sci: Mater. Electron. 35 476Google Scholar

    [35]

    Peng C W, He C R, Wu H F, Huang S, Yu C, Su X D, Zou S 2024 Sol. Energ. Mat. Sol. C 273 112952Google Scholar

    [36]

    Jiang K, Yang Y H, Yan Z, Huang S L, Li X D, Li Z F, Zhou Y N, Zhang L P, Meng F Y, Liu Z X, Liu W Z 2022 Sol. Energ. Mat. Sol. C 243 111801Google Scholar

    [37]

    Soman A, Das U K, Hegedus S S 2023 ACS Appl. Electron. Mater. 5 803Google Scholar

    [38]

    Morales-Vilches A B, Wang E C, Henschel T, Kubicki M, Cruz A, Janke S, Korte L, Schlatmann R, Stannowski B 2020 Phys. Status. Solidi. A 217 1900518Google Scholar

    [39]

    Ru X N, Qu M H, Wang J Q, Ruan T Y, Yang M, Peng F G, Long W, Zheng K, Yan H, Xu X X 2020 Sol. Energ. Mat. Sol. C. 215 110643Google Scholar

    [40]

    Liu C S, Wu C Y, Chen I W, Lee H C, Hong L S 2013 Prog. Photovolt: Res. Appl. 21 326Google Scholar

    [41]

    Page M R, Iwaniczko E, Xu Y Q, Roybal L, Hasoon F, Wang Q, Crandall R S 2011 Thin Solid Films 519 4527Google Scholar

    [42]

    He J, Li W, Wang Y, Mu J L, An K, Chou X J 2015 Mater. Lett. 161 175Google Scholar

    [43]

    Pandey A, Bhattacharya S, Panigrahi J, Mandal S, Komarala V K 2022 Phys. Status Solidi A 219 2200183Google Scholar

    [44]

    Nunomura1 S, Sakata I, Misawa T, Kawai S, Kamataki K, Koga K, Shiratani M 2023 Jpn. J. Appl. Phys. 62 SL1027Google Scholar

    [45]

    Macco B, Melskens J, Podraza N J, Arts K, Pugh C, Thomas O, Kessels W M M 2017 J. Appl. Phys 122 035302Google Scholar

    [46]

    Wu Z P, Zhang L P, Chen R F, Liu W Z, Li Z F, Meng F Y, Liu Z X 2019 Appl. Surf. Sci. 475 504Google Scholar

    [47]

    Tomasil A, Sahli F, Fannil L, Seif J P, de Nicolas S M, Holm N, Geissblihler J, Paviet-Salomon B, Loper P, Nicolay S, De Wolf S, Ballif C 2016 IEEE. J. Photovolt. 6 17Google Scholar

    [48]

    Morell G, Katiyar R S, Weisz S Z, Jia H, Shinar J, Balberg I 1995 J. Appl. Phys. 78 5120Google Scholar

    [49]

    Iqbal Z, Veprek S 1982 J. Phys. C: Solid State Phys. 15 377Google Scholar

    [50]

    De Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109Google Scholar

    [51]

    Biegelsen D K, Street R A, Tsai CC, Knights J C 1979 Phys. Rev. B 20 4839Google Scholar

    [52]

    Beyer W, Wagner H 1983 J. Non-Cryst. Solids 59 161Google Scholar

    [53]

    Yabumoto N, Saito K, Morita M, Ohmi T 1991 Jpn. J. Appl. Phys. 30 L419Google Scholar

    [54]

    Beyer W, Wagner H, Chevallier J, Reichelt K 1982 90 145

    [55]

    Beyer W 1991 Phys. Rev. B Condens. Matter 170 105Google Scholar

    [56]

    Beyer W, Wagner H, Mell H 1981 Solid State. Commun. 39 375Google Scholar

    [57]

    Street R A, Tsai CC, Kakalios J, Jackson W B 1987 Philos. Mag. B 56 305Google Scholar

    [58]

    Nasuno Y, Kondo M, Matsuda A, Fukuhori H, Kanemitsu Y 2002 Appl. Phys. Lett. 81 3155Google Scholar

    [59]

    Dreon J, Jeangros Q, Cattin J, Haschke J, Antognini L, Ballif C, Boccard M 2020 Nano Energy 70 104495Google Scholar

    [60]

    Holman Z C, Descoeudres A, Barraud L, Fernandez F Z, Sei J P, De Wolf S, Ballif C 2012 IEEE J. Photovolt. 2 7Google Scholar

    [61]

    Ding K N, Aeberhard U, Finger F, Rau U 2013 J. Appl. Phys. 113 134501Google Scholar

    [62]

    Boccard M, Holman Z C 2015 J. Appl. Phys. 118 065704Google Scholar

    [63]

    Jiang K, Liu W Z, Yang Y H, Yan Z, Huang S L, Li Z F, Li X D, Zhang L P, Liu Z X 2022 J. Mater. Sci.: Mater. Electron. 33 416Google Scholar

    [64]

    Fujiwara H, Kaneko T, Kondo M 2007 Appl. Phys. Lett. 91 133508Google Scholar

    [65]

    Mews M, Liebhaber M, Rech B, Korte L 2015 Appl. Phys. Lett. 107 013902Google Scholar

    [66]

    Wu Z P, Zhang L P, Liu W Z, Chen R F, Li Z F, Meng F Y, Liu Z X 2020 J. Mater. Sci. Mater. El. 31 9468Google Scholar

    [67]

    Wen L L, Zhao L, Wang G H, Jia X J, Xu X H, Qu S Y, Li X T, Zhang X Y, Xin K, Xiao J H, Wang W J 2023 Sol. Energ. Mat. Sol. C. 258 112429Google Scholar

    [68]

    Wu X Y, Wang X T, Lv R R, Song H, Yu Y J, Sen C D, Cheng Y H, Khan M U, Ciesla A, Xu T, Zhang G C, Hoex B 2025 Sol. Energ. Mat. Sol. C. 282 113325Google Scholar

    [69]

    Sinha A, Qian J D, Moffitt S L, Hurst K, Terwilliger K, Miller D C, Schelhas L T, Hacke P 2023 Prog. Photovoltaics 31 36Google Scholar

    [70]

    Yang L, Hu Z C, He Q Y, Liu Z K, Zeng Y H, Yang L F, Yu X G, Yang D R 2024 Sol. Energ. Mat. Sol. C 275 113022Google Scholar

    [71]

    Yang J L, Tang Y H, Zhou C L, Chen S N, Cheng S Z, Wang L C, Zhou S, Jia X J, Wang W J, Xu X H, Xiao J H, Wei W W 2024 Sol. Energ. Mat. Sol. C 276 113062Google Scholar

    [72]

    Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C 120 270Google Scholar

    [73]

    Padi S P, Khokhar M Q, Chowdhury S, Cho E C, Yi J 2021 Trans. Electr. Electro. 22 557Google Scholar

    [74]

    Wang Q Q, Wu W P, Yuan N Y, Li Y L, Zhang Y, Ding J N 2020 Sol. Energ. Mat. Sol. C 208 110423Google Scholar

    [75]

    Huang J B, Zhao Z C, Li M, Chen J, Zhou X R, Deng X X, Li B, Shen K L, Cheng Q Y, Cai X W 2023 Sol. Energ. Mat. Sol. C. 260 112489Google Scholar

    [76]

    Xing H Y, Liu Z K, Yang Z H, Liao M D, Wu Q Q, Lin N, Liu W, Ding C F, Zeng Y H, Yan B J, Ye J C 2023 Sol. Energ. Mat. Sol. C 257 112354Google Scholar

    [77]

    Yang L, Ou Y L, Lv X, Lin N, Zeng Y H, Hu Z C, Yuan S, Ye J C, Yu X G, Yang D R 2024 Energy Environ. Mater. 7 e12795Google Scholar

    [78]

    钱金忠, 左克祥, 王安, 杜东亚, 凡金星, 高纪凡 2023 太阳能 353 9Google Scholar

    Qian J Z, Zuo K X, Wang A, Du D Y, Fan J X, Gao J F 2023 Solar Energy 353 9Google Scholar

    [79]

    Ghosh D K, Das G, Bose S, Mukhopadhyay S, Sengupta A 2024 Energy Technol. 12 2400238Google Scholar

    [80]

    Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2017 Sol. Energ. Mat. Sol. C 173 96Google Scholar

    [81]

    Yan D, Cuevas A, Phang S P, Wan Y, Macdonald D 2018 Appl. Phys. Lett. 113 061603Google Scholar

    [82]

    Richter A, Benick J, Müller R, Feldmann F, Reichel C, Hermle M, Glunz S W 2018 Prog. Photovolt. Res. Appl. 26 579Google Scholar

    [83]

    Richter A, Müller R, Benick J, Feldmann F, Steinhauser  B, Reichel C, Fell A, Bivour M, Hermle M, Glunz S W 2021 Nat. Energy 6 429Google Scholar

    [84]

    Yu H L, Liu W, Du H J, Liu Z K, Liao M D, Song N, Yang Z H, Zeng Y H, Ye J C 2024 Nano Energy 125 109556Google Scholar

    [85]

    Ma D, Liu W, Xiao M J, Yang Z H, Liu Z K, Liao M D, Han Q L, Cheng H, Xing H Y, Ding Z T, Yan B J, Wang Y D, Zeng Y H, Ye J C 2022 Sol. Energy 242 1Google Scholar

    [86]

    Du H J, Lin Y R, Wang Z X, Liao M D, Liu Z K, Luo X J, Cao Y H, Fu L M, Liu W, Yan B J, Yang Z H, Yuan Z Z, Zeng Y H, Ye J C 2024 Mat. Sci. Semicon. Proc. 170 107969Google Scholar

    [87]

    Li W K, Zhou R, Wang Y K, Su Q F, Yang J, Xi M, Liu Y S 2024 Appl. Surf. Sci. 673 160835Google Scholar

    [88]

    Wang Q Q, Gu S W, Guo K Y, Peng H, Wu W P, Ding J N 2024 Sol. Energ. Mat. Sol. C. 273 112959Google Scholar

    [89]

    Blakers A W, Wang A, Milne A M, Zhao J, Green M A 1989 Appl. Phys. Lett. 55 1363Google Scholar

    [90]

    Saint-Cast P, Benick J, Kania D, Weiss L, Hofmann M, Rentsch J, Preu R, Glunz S W 2010 IEEE Electron. Device Lett. 31 695Google Scholar

    [91]

    Töfflingera J A, Laadesb A, Leendertza C, Montañeza L M, Kortea L, Stürzebecher U, Sperlichc H P, Recha B 2014 Energy Procedia 55 845Google Scholar

    [92]

    Gatz S, Hannebauer H, Hesse R, Werner F, Schmidt A, Dullweber T, Schmidt J, Bothe K, Brendel R 2011 Phys. Status Solidi Rapid Res. Lett. 5 147Google Scholar

    [93]

    Kim J, Ju M, Kim Y, Yi J 2022 Mat. Sci. Semicon. Proc. 148 106833Google Scholar

    [94]

    Tong R, Zhang S C, Liu D M, Zhang W P, Wang Y T, Liu X F 2021 Sol. Energ. Mat. Sol. C. 231 111319Google Scholar

    [95]

    Liu P K, Cheng Y L, Wang L K 2020 Int. J. Photoenergy 2020 6686797Google Scholar

    [96]

    Kashyap S, Madan J, Pandey R, Ramanujam J 2022 Opt. Mater. 128 112399Google Scholar

    [97]

    Mouri T K, Upadhyaya A, Rohatgi A, Ok Y W, Hua A, Hauschild D, Weinhardt L, Heske C, Upadhyaya V, Rounsaville B, Shafarman W N, Das U K 2023 IEEE 50th Photovoltaic Specialists Conference (PVSC) San Juan, PR, USA, June 11–16, 2023 p1

    [98]

    Jang J S, Kim H S, Karade V C, Park S W, Kim C W, Kim J H 2024 J. Alloys Compd. 970 172691Google Scholar

    [99]

    Wei P F, Tong R, Liu X F, Wei Y, Zhang Y A, Liu X, Dai J, Yin H P, Liu D M 2024 Mat. Sci. Semicon. Proc. 170 107947Google Scholar

  • [1] Wang Chen, Wen Pan, Peng Cong, Xu Meng, Chen Long-Long, Li Xi-Feng, Zhang Jian-Hua. Effect of passivation layer on back channel etching InGaZnO thin film transistors. Acta Physica Sinica, 2023, 72(8): 087302. doi: 10.7498/aps.72.20222272
    [2] Ding Jun, Wen Li-Wei, Li Rui-Xue, Zhang Ying. Control of electric properties of silicene heterostructure by reversal of ferroelectric polarization. Acta Physica Sinica, 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [3] Zhang Jie-Yin, Gao Fei, Zhang Jian-Jun. Research progress of silicon and germanium quantum computing materials. Acta Physica Sinica, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [4] Zhu Jing-Yan, Zou Shuai, Sun Hua, Su Xiao-Dong. Analyses of heat dissipation of direct-cooling backsheets of crystalline silicon photovoltaic modules at ambient temperatures. Acta Physica Sinica, 2021, 70(9): 098802. doi: 10.7498/aps.70.20201741
    [5] Zhang Bo-Yu, Zhou Jia-Kai, Ren Cheng-Chao, Su Xiang-Lin, Ren Hui-Zhi, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Design and optimization of passivation layers and emitter layers in silicon heterojunction solar cells. Acta Physica Sinica, 2021, 70(18): 188401. doi: 10.7498/aps.70.20210674
    [6] Chen Jun-Fan, Ren Hui-Zhi, Hou Fu-Hua, Zhou Zhong-Xin, Ren Qian-Shang, Zhang De-Kun, Wei Chang-Chun, Zhang Xiao-Dan, Hou Guo-Fu, Zhao Ying. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells. Acta Physica Sinica, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [7] Chen Xin-Liang, Chen Li, Zhou Zhong-Xin, Zhao Ying, Zhang Xiao-Dan. Progress of Cu2O/ZnO oxide heterojunction solar cells. Acta Physica Sinica, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [8] Wen Jia-Le, Xu Zhi-Cheng, Gu Yu, Zheng Dong-Qin, Zhong Wei-Rong. Thermal rectification of heterojunction nanotubes. Acta Physica Sinica, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [9] Feng Qiu-Ju, Jiang Jun-Yan, Tang Kai, Lü Jia-Yin, Liu Yang, Li Rong, Guo Hui-Ying, Xu Kun, Song Zhe, Li Meng-Ke. p-ZnO thin film/n-Si heterojunction light-emitting diode fabricated by chemical vapor deposition and its characterization. Acta Physica Sinica, 2013, 62(5): 057802. doi: 10.7498/aps.62.057802
    [10] Xue Yuan, Gao Chao-Jun, Gu Jin-Hua, Feng Ya-Yang, Yang Shi-E, Lu Jing-Xiao, Huang Qiang, Feng Zhi-Qiang. Study on the properties and optical emission spectroscopy of the intrinsic silicon thin film in silicon heterojunction solar cells. Acta Physica Sinica, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [11] Wu Chen-Yang, Gu Jin-Hua, Feng Ya-Yang, Xue Yuan, Lu Jing-Xiao. The characterization of hydrogenated amorphous silicon and epitaxial silicon thin films grown on crystalline silicon substrates by using spectroscopic ellipsometry. Acta Physica Sinica, 2012, 61(15): 157803. doi: 10.7498/aps.61.157803
    [12] Ding Wen-Ge, Sang Yun-Gang, Yu Wei, Yang Yan-Bin, Teng Xiao-Yun, Fu Guang-Sheng. Current transport mechanism in silicon-rich silicon nitride/c-Si heterojunction. Acta Physica Sinica, 2012, 61(24): 247304. doi: 10.7498/aps.61.247304
    [13] Zhang Xiang, Liu Bang-Wu, Xia Yang, Li Chao-Bo, Liu Jie, Shen Ze-Nan. The passivation of Al2O3 and its applications in the crystalline silicon solar cell. Acta Physica Sinica, 2012, 61(18): 187303. doi: 10.7498/aps.61.187303
    [14] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [15] Zhang Yong, Liu Yan, Lü Bin, Tang Nai-Yun, Wang Ji-Qing, Zhang Hong-Ying. Influence of barrier height of the front contact on the amorphous silicon and microcrystalline silicon heterojunction solar cells. Acta Physica Sinica, 2009, 58(4): 2829-2835. doi: 10.7498/aps.58.2829
    [16] Zhang Wei-Ying, Wu Xiao-Peng, Sun Li-Jie, Lin Bi-Xia, Fu Zhu-Xi. Study on the photovoltaic conversion of ZnO/Si heterojunction. Acta Physica Sinica, 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [17] Wu Kai-Shun, Long Xing-Teng, Dong Jian-Wen, Chen Di-Hu, Wang He-Zhou. Phase properties of photonic crystal heterostructure and its applications. Acta Physica Sinica, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [18] Chen Yi-Kuang, Lin Kui-Xun, Luo Zhi, Liang Rui-Sheng, Zhou Fu-Fang. Aluminum-induced rapid crystallization of a-Si films at low temperatures in an electric field and microstructure analyses of the crystallized films. Acta Physica Sinica, 2004, 53(2): 582-586. doi: 10.7498/aps.53.582
    [19] FENG WEI, CAO MENG, WEI WEI, WU HONG-CAI, WAN MEI-XIANG, KATSUMI YOSHINO. PROPERTIES OF CONDUCTING POLYMER DONOR-ACCEPTOR COMPOSITE FILMS AND PHOTOVOLTAIC CHARACTERISTICS OF JUNCTION DEVICES. Acta Physica Sinica, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [20] LI SHU-PING, WANG REN-ZHI, ZHENG YONG-MEI, CAI SHU-HUI, HE GUO-MIN. APPLLICATIONS OF AVERAGE-BOND-ENERGY METHOD IN STRAINED-LAYER HETEROJUNCTION BAND OFFSET. Acta Physica Sinica, 2000, 49(8): 1441-1446. doi: 10.7498/aps.49.1441
Metrics
  • Abstract views:  532
  • PDF Downloads:  39
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2024
  • Accepted Date:  20 December 2024
  • Available Online:  25 December 2024
  • Published Online:  20 February 2025

/

返回文章
返回
Baidu
map