Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of silicon heterojunction solar cells with Si/Si1-xGex quantum wells

Zhang Xiao-Yu Zhang Li-Ping Ma Zhong-Quan Liu Zheng-Xin

Citation:

Numerical simulation of silicon heterojunction solar cells with Si/Si1-xGex quantum wells

Zhang Xiao-Yu, Zhang Li-Ping, Ma Zhong-Quan, Liu Zheng-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Heterojunction with intrinsic thin-layer (HIT) solar cells attract attention due to their high open circuit voltage and stable performance. However, short circuit current density is difficult to improve due to light losses of transparent conductive oxide and hydrogenated amorphous silicon passivation (a-Si:H) layer and low absorption coefficient of crystalline silicon (c-Si). Silicon germanium alloy (Si/Si1-xGex) quantum wells and quantum dots are capable of improving low light utilization by strong optical absorption in the infrared region. In this article, opto-MoS2of the HIT solar cells integrated with Si/Si1-xGex quantum wells (HIT-QW) as a surface absorber are investigated by numerical simulation with Technology Computer Aided Design (TCAD). The influences of germanium content on the MoS2of HIT solar cells with long carrier lifetimes of Si1-xGex layers (p*) and defect-free a-Si:H/c-Si interface are investigated at first. The simulation results indicate that optical utilization in the infrared region is enhanced with the increase of germanium fraction, while open circuit voltage degrades due to the decreasing of the energy band gap of Si1-xGex, radiative recombination and auger recombination mechanism in the Si/Si1-xGex quantum wells. And the conversion efficiency reaches a maximum value at a germanium fraction of 0.25 then drops distinctly. When the germanium fraction increases from 0 to 0.25, the short circuit current density increases from 34.3 mA/cm2 to 34.8 mA/cm2, while the open circuit voltage declines from 749 mV to 733 mV. Hence, the conversion efficiency increases from 21.5% to 21.7% due to the fact that the enhancement of short circuit current density compensates for the reduction of open circuit voltage. When the germanium content increases to more than 50%, a serious open circuit voltage loss of more than 130 mV associated with the energy band gap loss of Si1-xGex arises in the HIT-QW solar cells, which indicates that the dominating carrier transport mechanism changes from shockley diffusion to recombination in the Si/Si1-xGex quantum wells. Subsequently, the influences of interface defects at a-Si:H/c-Si interface and bulk recombination centers in the Si/Si1-xGex quantum wells are discussed. Both interface holes at a-Si:H/c-Si interface and bulk holes in Si1-xGex quantum wells can be recombined through the interface defects at a-Si:H/c-Si interface and bulk recombination centers in the Si/Si1-xGex quantum wells, respectively, which restricts the position of hole fermi level in the open circuit condition. When the germanium fraction increases, the influence of interface defects at a-Si:H/c-Si interface becomes weak on the degradation of open circuit voltage compared with the significant influence of the bulk trap centers. Moreover, p* of longer than 510-5 s is necessary for the retention of electrical performance of HIT-QW solar cells by the simulation. Based on this research, high-efficiency HIT solar cells can be achieved by incorporating high-quality Si/Si0.75Ge0.25 quantum wells, which also requires the impactful passivation of a-Si:H/c-Si interface.
      Corresponding author: Zhang Li-Ping, zlp_wan@mail.sim.ac.cn
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant No. 61204005).
    [1]

    Taguchi M, Kawamoto K, Tsuge S, Baba T, Sakata H, Morizane M, Uchihashi K, Nakamura N, Kiyama S, Oota O 2000 Prog. Photovolt. 8 503

    [2]

    Dao V A, Heo J, Choi H, Kim Y, Park S, Jung S, Lakshminarayan N, Yi J 2010 Sol. Energy 84 777

    [3]

    Bivour M, Meinhardt C, Pysch D, Reichel C, Ritzau K U, Hermle M, Glunz S W 2010 35th IEEE Photovoltaic Spec. Conf. Honolulu, Hawaii, USA, June 20-25, 2010 p1304

    [4]

    Hekmatshoar B, Shahrjerdi D, Hopstaken M, Ott J A, Sadana D K 2012 Appl. Phys. Lett. 101 103906

    [5]

    Kanevce A, Mezger W K 2009 J. Appl. Phys. 105 969730

    [6]

    Schulze T F, Korte L, Conrad E, Schmidt M, Rech B 2010 J. Appl. Phys. 107 023711

    [7]

    Rahmouni M, Datta A, Chatterjee P, Damon-Lacoste J, Ballif C, Cabarrocas P R I 2010 J. Appl. Phys. 107 054521

    [8]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE. J. Photovolt. 4 96

    [9]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE. J. Photovolt. 4 1433

    [10]

    Jiang C W, Green M A 2006 J. Appl. Phys. 99 114902

    [11]

    Wang T, Zhang J J, Liu H Y 2015 Acta Phys. Sin. 64 0204209 (in Chinese) [王霆, 张建军, Huiyun Liu 2015 64 0204209]

    [12]

    Jiang B Y, Zheng J B, Wang C F, Hao J, Cao C D 2012 Acta Phys. Sin. 61 138801 (in Chinese) [姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德 2012 61 138801]

    [13]

    Li W J, Zhong X H 2015 Acta Phys. Sin. 64 038806 (in Chinese) [李文杰, 钟新华 2015 64 038806]

    [14]

    Conibeer G, Green M, Corkish R, Cho Y, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y D, Puzzer T, Trupke T, Richards B, Shalav A, Lin K L 2006 Thin Solid Films 511 654

    [15]

    Luque A, Marti A 1997 Phys. Rev. Lett. 78 5014

    [16]

    Tawancy H M 2012 J. Mater. Sci. 47 93

    [17]

    Liu Z, Zhou T W, Li L L, Zuo Y H, He C, Li C B, Xue C L, Cheng B W, Wang Q M 2013 Appl. Phys. Lett. 103 082101

    [18]

    Fukatsu S, Sunamura H, Shiraki Y, Komiyama S 1997 Appl. Phys. Lett. 71 258

    [19]

    Tayagaki T, Hoshi Y, Usami N 2013 Sci. Rep. 3 2703

    [20]

    Ye H, Yu J Z 2014 Sci. Technol. Adv. Mater. 15 024601

    [21]

    Jiang B, Dong T, Su Y, He Y, Wang K Y 2014 J. Microelectromech. Syst. 23 213

    [22]

    Linder K K, Zhang F C, Rieh J S, Bhattacharya P, Houghton D 1997 Appl. Phys. Lett. 70 3224

    [23]

    Fonash S J 1980 J. Appl. Phys. 51 2115

    [24]

    Saad M, Kassis A 2003 Sol. Energy Mater. Sol. Cells 79 507

    [25]

    Ghannam M, Shehadah G, Abdulraheem Y, Poortmans J 2015 Sol. Energy Mater. Sol. Cells 132 320

  • [1]

    Taguchi M, Kawamoto K, Tsuge S, Baba T, Sakata H, Morizane M, Uchihashi K, Nakamura N, Kiyama S, Oota O 2000 Prog. Photovolt. 8 503

    [2]

    Dao V A, Heo J, Choi H, Kim Y, Park S, Jung S, Lakshminarayan N, Yi J 2010 Sol. Energy 84 777

    [3]

    Bivour M, Meinhardt C, Pysch D, Reichel C, Ritzau K U, Hermle M, Glunz S W 2010 35th IEEE Photovoltaic Spec. Conf. Honolulu, Hawaii, USA, June 20-25, 2010 p1304

    [4]

    Hekmatshoar B, Shahrjerdi D, Hopstaken M, Ott J A, Sadana D K 2012 Appl. Phys. Lett. 101 103906

    [5]

    Kanevce A, Mezger W K 2009 J. Appl. Phys. 105 969730

    [6]

    Schulze T F, Korte L, Conrad E, Schmidt M, Rech B 2010 J. Appl. Phys. 107 023711

    [7]

    Rahmouni M, Datta A, Chatterjee P, Damon-Lacoste J, Ballif C, Cabarrocas P R I 2010 J. Appl. Phys. 107 054521

    [8]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE. J. Photovolt. 4 96

    [9]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE. J. Photovolt. 4 1433

    [10]

    Jiang C W, Green M A 2006 J. Appl. Phys. 99 114902

    [11]

    Wang T, Zhang J J, Liu H Y 2015 Acta Phys. Sin. 64 0204209 (in Chinese) [王霆, 张建军, Huiyun Liu 2015 64 0204209]

    [12]

    Jiang B Y, Zheng J B, Wang C F, Hao J, Cao C D 2012 Acta Phys. Sin. 61 138801 (in Chinese) [姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德 2012 61 138801]

    [13]

    Li W J, Zhong X H 2015 Acta Phys. Sin. 64 038806 (in Chinese) [李文杰, 钟新华 2015 64 038806]

    [14]

    Conibeer G, Green M, Corkish R, Cho Y, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y D, Puzzer T, Trupke T, Richards B, Shalav A, Lin K L 2006 Thin Solid Films 511 654

    [15]

    Luque A, Marti A 1997 Phys. Rev. Lett. 78 5014

    [16]

    Tawancy H M 2012 J. Mater. Sci. 47 93

    [17]

    Liu Z, Zhou T W, Li L L, Zuo Y H, He C, Li C B, Xue C L, Cheng B W, Wang Q M 2013 Appl. Phys. Lett. 103 082101

    [18]

    Fukatsu S, Sunamura H, Shiraki Y, Komiyama S 1997 Appl. Phys. Lett. 71 258

    [19]

    Tayagaki T, Hoshi Y, Usami N 2013 Sci. Rep. 3 2703

    [20]

    Ye H, Yu J Z 2014 Sci. Technol. Adv. Mater. 15 024601

    [21]

    Jiang B, Dong T, Su Y, He Y, Wang K Y 2014 J. Microelectromech. Syst. 23 213

    [22]

    Linder K K, Zhang F C, Rieh J S, Bhattacharya P, Houghton D 1997 Appl. Phys. Lett. 70 3224

    [23]

    Fonash S J 1980 J. Appl. Phys. 51 2115

    [24]

    Saad M, Kassis A 2003 Sol. Energy Mater. Sol. Cells 79 507

    [25]

    Ghannam M, Shehadah G, Abdulraheem Y, Poortmans J 2015 Sol. Energy Mater. Sol. Cells 132 320

  • [1] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [2] Chen Jun-Fan, Ren Hui-Zhi, Hou Fu-Hua, Zhou Zhong-Xin, Ren Qian-Shang, Zhang De-Kun, Wei Chang-Chun, Zhang Xiao-Dan, Hou Guo-Fu, Zhao Ying. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells. Acta Physica Sinica, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [3] Wan Ya-Zhou, Gao Ming, Li Yong, Guo Hai-Bo, Li Yong-Hua, Xu Fei, Ma Zhong-Quan. First principle study of ternary combined-state and electronic structure in amorphous silica. Acta Physica Sinica, 2017, 66(18): 188802. doi: 10.7498/aps.66.188802
    [4] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [5] Dai Xian-Ying, Yang Cheng, Song Jian-Jun, Zhang He-Ming, Hao Yue, Zheng Ruo-Chuan. The model of valence-band dispersion for strained Ge/Si1-xGex. Acta Physica Sinica, 2012, 61(13): 137104. doi: 10.7498/aps.61.137104
    [6] Ding Wen-Ge, Sang Yun-Gang, Yu Wei, Yang Yan-Bin, Teng Xiao-Yun, Fu Guang-Sheng. Current transport mechanism in silicon-rich silicon nitride/c-Si heterojunction. Acta Physica Sinica, 2012, 61(24): 247304. doi: 10.7498/aps.61.247304
    [7] Zhong Chun-Liang, Geng Kui-Wei, Yao Ruo-He. S-shaped J-V characteristic of a-Si:H/c-Si heterojunction solar cell. Acta Physica Sinica, 2010, 59(9): 6538-6544. doi: 10.7498/aps.59.6538
    [8] Song Jian-Jun, Zhang He-Ming, Xuan Rong-Xi, Hu Hui-Yong, Dai Xian-Ying. Anisotropy of hole effective mass of strained Si/(001)Si1-xGex. Acta Physica Sinica, 2009, 58(7): 4958-4961. doi: 10.7498/aps.58.4958
    [9] Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Xuan Rong-Xi, Dai Xian-Ying. Band structure of strained Si1-xGex. Acta Physica Sinica, 2009, 58(11): 7947-7951. doi: 10.7498/aps.58.7947
    [10] Song Jian-Jun, Zhang He-Ming, Dai Xian-Ying, Hu Hui-Yong, Xuan Rong-Xi. Band structure of strained Si/(111)Si1-xGex: a first principles investigation. Acta Physica Sinica, 2008, 57(9): 5918-5922. doi: 10.7498/aps.57.5918
    [11] Zhao Lei, Zhou Chun-Lan, Li Hai-Ling, Diao Hong-Wei, Wang Wen-Jing. Optimizing polymorphous silicon back surface field of a-Si(n)/c-Si(p) heterojunction solar cells by simulation. Acta Physica Sinica, 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
    [12] Hu Zhi-Hua, Liao Xian-Bo, Diao Hong-Wei, Xia Chao-Feng, Zeng Xiang-Bo, Hao Hui-Ying, Kong Guang-Lin. NIP a-Si:H solar cells on stanless steel with p-type nc-Si:H window layer. Acta Physica Sinica, 2005, 54(6): 2945-2949. doi: 10.7498/aps.54.2945
    [13] Hu Zhi-Hua, Liao Xian-Bo, Zeng Xiang-Bo, Xu Yan-Yue, Zhang Shi-Bin, Diao Hong-Wei, Kong Guang-Lin. Numerical simulation of nc-Si:H/ c-Si heterojunction solar cells. Acta Physica Sinica, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
    [14] PENG YING-CAI, XU GANG-YI, HE YU-LIANG, LIU MING, LI YUE-XIA. CARRIER TRANSPORT PROPERTIES OF THE (n)nc-Si:H/(p)c-Si HETEROJUNCTION. Acta Physica Sinica, 2000, 49(12): 2466-2471. doi: 10.7498/aps.49.2466
    [15] YANG YU, XIA GUAN-QUN, ZHAO GUO-QING, WANG XUN. Si+ ION IMPLANTATION INFLUENCE ON PHOTOLUMINESCENCE IN Si1-xGex/Si QUANTUM WELLS GROWN BY MOLECULAR BEAM EPITAXY. Acta Physica Sinica, 1998, 47(6): 978-984. doi: 10.7498/aps.47.978
    [16] HUANG JING-YUN, YE ZHI-ZHEN, QUE DUAN-LIN. CALCULATION OF CRITICAL LAYER THICKNESS BY TAKING INTO ACCOUNT THE THERMAL STRAIN IN Si1-xGex /Si STRAIN LAYER HETEROSTRUCTURES. Acta Physica Sinica, 1997, 46(10): 2010-2014. doi: 10.7498/aps.46.2010
    [17] CHEN GUANG-HUA, GUO YONG-PING, YAO JIANG-HONG, SONG ZHI-ZHONG, ZHANG FANG-QING. PROPERTIES OF INTERFACE OF a-Si:H/a-SiCx: H SUPERLATTICE. Acta Physica Sinica, 1994, 43(11): 1847-1853. doi: 10.7498/aps.43.1847
    [18] ZHANG FANG-QING, HE DE-YAN, SONG ZHI-ZHONG, KE NING, CHEN GUANG-HUA. BORON DIFFUSION IN B-DOPED a-SiC:H/UNDOPED a-Si:H HETEROJUNCTIONS. Acta Physica Sinica, 1990, 39(12): 1982-1988. doi: 10.7498/aps.39.1982
    [19] LATERAL PHOTOVOLTAIC EFFECT IN a-Si:H JUNCTIONS. Acta Physica Sinica, 1989, 38(8): 1235-1244. doi: 10.7498/aps.38.1235
    [20] WANG WAN-LU, LIAO KE-JUN. STRESS STUDIES OF AMORPHOUS a-Si:H/a-SiNx:H HETEROJUNCTIONS AND a-Si:H, a-SiNx:H FILMS. Acta Physica Sinica, 1987, 36(12): 1529-1537. doi: 10.7498/aps.36.1529
Metrics
  • Abstract views:  6336
  • PDF Downloads:  280
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2016
  • Accepted Date:  05 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map