搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于负载Fe3O4纳米微球的大尺寸单层二维Ti3C2Tx微波吸收性能

肖忆瑶 何佳豪 陈南锟 王超 宋宁宁

引用本文:
Citation:

基于负载Fe3O4纳米微球的大尺寸单层二维Ti3C2Tx微波吸收性能

肖忆瑶, 何佳豪, 陈南锟, 王超, 宋宁宁

Enhanced microwave absorption performance of large-sized monolayer two-dimensional Ti3C2Tx based on loaded Fe3O4 nanoparticles

Xiao Yi-Yao, He Jia-Hao, Chen Nan-Kun, Wang Chao, Song Ning-Ning
PDF
HTML
导出引用
  • 二维碳/氮化物MXene近年来受到了越来越多的关注, 其优异的导电性和表面丰富的官能团可对电磁波吸收有着积极的作用. 然而作为仅有介电损耗的非磁性材料, MXene存在着阻抗不匹配等问题, 极大地限制了实际应用. 因此, 将磁性材料与MXene结合成为了目前微波吸收领域的研究热点, 而降低MXene堆叠现象与调控磁性材料所占比例成为实现良好微波吸收性能的关键因素. 本文通过简单的静电吸附作用将水热法制备的Fe3O4纳米微球锚定在大尺寸单层二维Ti3C2Tx表面, 并在该Fe3O4@Ti3C2Tx复合结构中实现了–69.31 dB的最小反射损耗值(频率为16.19 GHz), 且此时的双峰吸收带宽可达到3.39 GHz. 另外, 雷达截面(RCS)模拟计算表明, 该样品也具有优异的RCS值, 表现出对雷达波优异的衰减能力. 本研究对二维材料和磁性材料在微波吸收领域的性能改善与实际应用提供了新的思路.
    With the rapid development of electronic equipment, electromagnetic interference and electromagnetic radiation pollution have become serious problems, because excessive electromagnetic interference will not only affect normal operation of electronic equipment but also do great harm to human health. In general, an ideal material for microwave absorption with the characteristics of high reflection loss (RL) intensity, wide effective absorption band (EAB), thin thickness, and lightweight could effectively consume electromagnetic wave (EMW) energy. Therefore, it is crucial to search for such an ideal microwave absorption material to deal with the electromagnetic radiation pollution. Two-dimensional (2D) carbon/nitride MXene has received more and more attention in recent years, because excellent electrical conductivity and rich surface-functional groups in MXene show positive effects on electromagnetic wave absorption. However, as a non-magnetic material with only dielectric loss, MXene exhibits obvious impedance mismatch, which greatly limits its practical applications. Combining MXene with magnetic materials becomes a hotspot for the exploration of ideal microwave absorption materials. As a typical ferrite, Fe3O4 shows excellent soft magnetic properties such as high saturation magnetization, high chemical stability, and simple preparation. In this paper, the 2D Fe3O4@Ti3C2Tx composite is successfully prepared by hydrothermal method and simple electrostatic adsorption process. The Fe3O4 nanoparticles are uniformly anchored on the surface of large-sized monolayer Ti3C2Tx, which effectively reduces the stacking of MXene. By regulating the proportion of magnetic materials, the microwave absorption performance of 2D Fe3O4@Ti3C2Tx composite is investigated. With the content of Fe3O4 nanoparticles in the 2D Fe3O4@Ti3C2Tx composite increasing from 4 mg to 8 mg, the microwave absorption performance is enhanced obviously. This is caused by the abundant Fe3O4/Ti3C2Tx interface, scattering channels, point defect, charge density difference in 2D Fe3O4@Ti3C2Tx composite, and the optimized impedance matching. The minimum reflection loss (RLmin) of 2D Fe3O4@Ti3C2Tx composite reaches –69.31 dB at a frequency of 16.19 GHz, and the effective absorption band (EAB) achieves 3.39 GHz. With the content of Fe3O4 nanoparticles further increasing to 10 mg, the microwave absorption performance shows a decreasing trend. Excessive Fe3O4 nanoparticles in the 2D Fe3O4@Ti3C2Tx composite lead to the decrease of electrical conductivity and thus the impedance dis-matching and dielectric loss decreasing, which leads the microwave absorption performance to decrease. Radar scattering cross section (RCS) is a physical quantity that evaluates the intensity of the scattered echo energy in the intercepted electromagnetic wave energy. The results of the RCS simulation can be applied to real objects which have been widely utilized in radar wave stealth. Its multi-angle simulation results can be used as an important basis for evaluating the stealth capability of microwave-absorbing material. The RCS simulations show that the average RCS value of 2D Fe3O4@Ti3C2Tx composite is over –47.92 dBm2 at an incidence angle of 25°, demonstrating its excellent radar wave absorption performance. This study provides new ideas for improving and practically using two-dimensional and magnetic materials in the microwave absorption field and gives a new path to the subsequent development of microwave-absorbing composites.
      通信作者: 宋宁宁, songnn@buct.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51872021)资助的课题.
      Corresponding author: Song Ning-Ning, songnn@buct.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51872021).
    [1]

    Liu W, Wang D H, Li K X, Wei X H 2022 ACS Appl. Nano Mater. 5 18488Google Scholar

    [2]

    Yue Y, Wang Y X, Xu X D, Wang C J 2023 J. Alloys Compd. 945 169342Google Scholar

    [3]

    Wang J Q, Wu Z, Xing Y Q, Li B J, Huang P, Liu L 2023 Small 19 2207051Google Scholar

    [4]

    Wu S J, Liu H, Wang Q H, Yin X Y, Hou L X 2023 J. Alloys Compd. 945 169372Google Scholar

    [5]

    Xu Y X, Huang Y F, Zhao J, Han X H, Chai C P, Ma H L 2023 J. Alloys Compd. 960 170829Google Scholar

    [6]

    Cai Z, Ma Y F, Zhao K, Yun M C, Wang X Y, Tong Z M, Wang M, Suhr J, Xiao L T, Jia S T, Chen X Y 2023 Chem. Eng. J. 462 142042Google Scholar

    [7]

    Wang Y, Gao X, Wu X M, Zhang W Z, Luo C Y, Liu P B 2019 Chem. Eng. J. 375 121942Google Scholar

    [8]

    Qiang R, Du Y C, Zhao H T, Wang Y, Tian C H, Li Z G, Han X J, Xu P 2015 J. Mater. Chem. A 3 13426Google Scholar

    [9]

    Liu Z Y, Tian H L, Xu R X, Men W W, Su T, Qu Y G, Zhao W, Liu D 2023 Carbon 205 138Google Scholar

    [10]

    Zeng X J, Zhao C, Yin Y C, Nie T L, Xie N H, Yu R H, Stucky G D 2022 Carbon 193 26Google Scholar

    [11]

    Zhang Z W, Cai Z H, Zhang Y, Peng Y L, Wang Z Y, Xia L, Ma S P, Yin Z Z, Wang R F, Cao Y S, Li Z, Huang Y 2021 Carbon 174 484Google Scholar

    [12]

    Che R C, Zhi C Y, Liang C Y, Zhou X G 2006 Appl. Phys. Lett. 88 033105Google Scholar

    [13]

    Fan X X, Zhang Z Y, Wang S J, Zhang J, Xiong S S 2023 Appl. Surf. Sci. 625 157116Google Scholar

    [14]

    Xiu Z L, Li X G, Zhang M Z, Huang B, Ma J Y, Yu J X, Meng X G 2022 J. Alloys Compd. 921 166068Google Scholar

    [15]

    Wang S J, Zhang Z Y, Fan X X, Li Y, Zhang J, Xue L L, Xiong S S 2023 J. Alloys Compd. 960 170724Google Scholar

    [16]

    Hua T X, Guo H, Qin J, Wu Q X, Li L Y, Qian B 2022 RSC Adv. 12 24980Google Scholar

    [17]

    Song S W, Zhang A T, Chen L, Jia Q, Zhou C L, Liu J Q, Wang X X 2021 Carbon 176 279Google Scholar

    [18]

    Li X, Xu D M, Zhou D, Pang S Z, Du C, Darwish M A, Zhou T, Sun S K 2023 Carbon 208 374Google Scholar

    [19]

    Wang X L, Han N, Zhang Y, Shi G M, Zhang Y J, Li D 2022 J. Mater. Sci. Mater. Electron. 33 21091Google Scholar

    [20]

    Guo R, Fan Y C, Wang L J, Jiang W 2020 Carbon 169 214Google Scholar

    [21]

    Zhou X J, Li S C, Zhang M L, Yuan X Y, Wen J W, Xi H, Wu H J, Ma X H 2023 Carbon 204 538Google Scholar

    [22]

    Wang Y, Dou Q, Jiang W, Su K, You J, Yin S, Wang T, Yang J, Li Q 2022 ACS Appl. Nano Mater. 5 9209Google Scholar

    [23]

    Du Q R, Men Q Q, Li R S, Cheng Y W, Zhao B, Che R C 2022 Small 18 2203609Google Scholar

    [24]

    Li M M, Xu Q Y, Jiang W, Farooq A, Qi Y R, Liu L F 2023 Fibers Polym. 24 771Google Scholar

    [25]

    He J, Shan D Y, Yan S Q, Luo H, Cao C, Peng Y H 2019 J. Magn. Magn. Mater. 492 165639Google Scholar

    [26]

    Lei B Y, Hou Y L, Meng W J, Wang Y Q, Yang X X, Ren M X, Zhao D L 2022 Carbon 196 280Google Scholar

    [27]

    Liu M, Zhao B, Pei K, Qian Y T, Yang C D, Liu Y H, Cao H, Zhang J C, Che R C 2023 Small 19 2300363Google Scholar

    [28]

    Zhang R X, Wang L, Xu C Y, Liang C Y, Liu X H, Zhang X F, Che R C 2022 Nano Res. 15 6743Google Scholar

    [29]

    Wang C, Chen N K, Yang T Y, Cheng Q Z, Wu D a, Xiao Y Y, He S L, Song N N 2023 J. Magn. Magn. Mater. 565 170267Google Scholar

    [30]

    Shu X F, Zhou J, Lian W, Jiang Y, Wang Y Q, Shu R W, Liu Y, Han J J, Zhuang Y 2021 J. Alloys Compd. 854 157087Google Scholar

    [31]

    Chen N K, Wang C, Xiao Y Y, Han R, Wu Q, Song N N 2023 J. Alloys Compd. 947 169554Google Scholar

    [32]

    Song N N, Gu S Z, Wu Q, Li C L, Zhou J, Zhang P P, Wang W, Yue M 2018 J. Magn. Magn. Mater. 451 793Google Scholar

    [33]

    Song N N, Yang H T, Liu H L, Ren X, Ding H F, Zhang X Q, Cheng Z H 2013 Sci. Rep. 3 3161Google Scholar

    [34]

    Wu Y H, Tan S J, Liu P Y, Zhang Y, Li P, Ji G B 2023 J. Mater. Sci. Technol. 151 10Google Scholar

    [35]

    Liu Y L, Tian C H, Wang F Y, Hu B, Xu P, Han X J, Du Y C 2023 Chem. Eng. J. 461 141867Google Scholar

    [36]

    Zhang S, Huang Y, Wang J M, Han X P, Zhang G Z, Sun X 2023 Carbon 209 118006Google Scholar

    [37]

    Wang L H, Su S L, Wang Y D 2022 ACS Appl. Nano Mater. 5 17565Google Scholar

    [38]

    Xiao Y Y, Zhang B X, Liao P, Qiu Z H, Song N N, Xu H J 2023 New J. Chem. 47 2575Google Scholar

    [39]

    Liu Q H, Cao Q, Bi H, Liang C Y, Yuan K P, She W, Yang Y J, Che R C 2016 Adv. Mater. 28 486Google Scholar

    [40]

    Yuan M Y, Zhao B, Yang C D, Pei K, Wang L Y, Zhang R X, You W B, Liu X H, Zhang X F, Che R C 2022 Adv. Funct. Mater. 32 2203161Google Scholar

    [41]

    Chen Z H, Zhang Z N, Zhang H Q, Hu D, Ye Z B, Zhang Y, Yu Y, Nie B H, Xi H X, Duan C X 2022 Rare Metals 41 3100Google Scholar

    [42]

    Yamashita T, Hayes P 2008 Appl. Surf. Sci. 254 2441Google Scholar

    [43]

    Deng B W, Liu Z C, Pan F, Xiang Z, Zhang X, Lu W 2021 J. Mater. Chem. A 9 3500Google Scholar

    [44]

    Lv Y H, Ye X Y, Chen S, Ma L, Zhang L, Liang W K, Wu Y P, Wang Q T 2023 Appl. Surf. Sci. 622 156935Google Scholar

    [45]

    Zha L L, Zhang X H, Wu J H, Liu J J, Lan J F, Yang Y, Wu B 2023 Ceram. Int. 49 20672Google Scholar

    [46]

    Yan H Y, Guo Y, Bai X Z, Qi J W, Zhao X Y, Lu H P, Deng L J 2023 Appl. Surf. Sci. 633 157602Google Scholar

    [47]

    Che R C, Peng L M, Duan X F, Chen Q, Liang X L 2004 Adv. Mater. 16 401Google Scholar

    [48]

    Olmedo L, Hourquebie P, Jousse F 1993 Adv. Mater. 5 373Google Scholar

    [49]

    Liu D W, Du Y C, Li Z N, Wang Y H, Xu P, Zhao H H, Wang F Y, Li C L, Han X J 2018 J. Mater. Chem. C 6 9615Google Scholar

    [50]

    Wang C, Han X J, Ping X, Wang J Y, Du Y C, Wang X H, Qin W, Zhang T 2010 J. Phys. Chem. C 114 3196Google Scholar

    [51]

    Ding J, Cheng L G 2021 J. Alloys Compd. 881 160574Google Scholar

    [52]

    Liu W, Duan P T, Ding Y, Zhang B W, Su H L, Zhang X B, Wang J Z, Zou Z Q 2022 Dalton Trans. 51 6597Google Scholar

    [53]

    Zhu X J, Dong Y Y, Pan F, Xiang Z, Liu Z C, Deng B W, Zhang X, Shi Z, Lu W 2021 Compos. Commun. 25 100731Google Scholar

    [54]

    Liu J K, Jia Z R, Zhou W H, Liu X H, Zhang C H, Xu B H, Wu G L 2022 Chem. Eng. J. 429 132253Google Scholar

    [55]

    Dai B S, Qi T, Song M J, Geng M Q, Dai Y X, Qi Y 2022 Nanoscale 14 10456Google Scholar

  • 图 1  二维Fe3O4@Ti3C2Tx复合材料制备过程示意图

    Fig. 1.  Schematic diagram of preparation process for 2D Fe3O4@Ti3C2Tx composites.

    图 2  (a)单层二维Ti3C2Tx的SEM图; (b) Fe3O4纳米颗粒的SEM图; (c), (d)二维Fe3O4@Ti3C2Tx复合材料的SEM图; (e)二维Fe3O4@Ti3C2Tx复合材料的TEM图, 插图为Fe3O4纳米颗粒的HRTEM图; (f), (g) Fe3O4纳米颗粒和Fe3O4纳米微球的粒径分布图; (h)元素映射图

    Fig. 2.  SEM image of (a) single layer Ti3C2Tx, (b) Fe3O4 nanoparticles, and (c), (d) 2D Fe3O4@Ti3C2Tx composites; (e) TEM image of 2D Fe3O4@Ti3C2Tx composites, inset shows HRTEM image of Fe3O4 nanoparticle; (f), (g) particle size distributions of Fe3O4 nanoparticles and Fe3O4 nanomicrospheres; (h) elemental mapping.

    图 3  (a)不同阶段产物的XRD图; (b)二维 Fe3O4@Ti3C2Tx复合纳米片、(c) Fe 2p、(d) O 1s、(e) Ti 2p、(f) C 1s的XPS光谱

    Fig. 3.  (a) XRD patterns of the products at different stages; (b) XPS survey spectra of 2D Fe3O4@Ti3C2Tx composites, (c) Fe 2p, (d) O 1s, (e) Ti 2p, and (f) C 1s.

    图 4  FT-4, FT-6, FT-8, FT-10样品的相对复介电常数和相对复磁导率 (a), (b)复介电常数的实部和虚部; (c)介电损耗角正切; (d), (e)复数磁导率的实部和虚部; (f)磁损耗角正切

    Fig. 4.  (a), (b) Real and imaginary parts of the permittivity, (c) dielectric loss tangent of FT-4, FT-6, FT-8, and FT-10 samples; (d), (e) real and imaginary parts of the complex permeability, (f) magnetic loss tangent of FT-4, FT-6, FT-8, and FT-10 samples.

    图 5  (a) FT-4, (b) FT-6, (c) FT-8, (d) FT-10的Cole-Cole曲线, 以及4个样品的(e)C0曲线和(f)衰减常数α

    Fig. 5.  Cole-Cole plot for (a) FT-4, (b) FT-6, (c) FT-8, and (d) FT-10 samples; (e) C0 curves and (f) attenuation constant α of the four samples.

    图 6  填充质量分数为20%的(a) FT-4, (b) FT-6, (c) FT-8, (d) FT-10样品的2D反射损耗图; 填充质量分数为20%的(e) FT-4, (f) FT-6, (g) FT-8, (h) FT-10样品的3D反射损耗图

    Fig. 6.  2D reflection loss images of (a) FT-4, (b) FT-6, (c) FT-8, and (d) FT-10 samples with 20% filling; 3D reflection loss images of (e) FT-4, (f) FT-6, (g) FT-8, and (h) FT-10 samples with 20% filling.

    图 7  填充质量分数为30%的FT-8 样品的(a) 2D反射损耗图, (b) 3D反射损耗图, (c) Cole-Cole曲线, (d)阻抗匹配图, (e)C0曲线和(f)衰减常数α

    Fig. 7.  (a) 2D reflection loss image, (b) 3D reflection loss image, (c) Cole-Cole curve, (d) impedance matching plot, (e) C0 curve and (f) attenuation constant α for FT-8 samples with 30% filling.

    图 8  填充质量分数为20%的(a) FT-4, (b) FT-6, (c) FT-8, (d) FT-10和(e)填充质量分数为30%的FT-8样品的CST模拟结果; (f) –90°—90°下所有样品的RCS值

    Fig. 8.  CST simulation results of (a) FT-4, (b) FT-6, (c) FT-8, (d) FT-10 samples with 20% filler, (e) FT-8 sample with 30% filler; (f) RCS values of all samples at –90°–90°.

    Baidu
  • [1]

    Liu W, Wang D H, Li K X, Wei X H 2022 ACS Appl. Nano Mater. 5 18488Google Scholar

    [2]

    Yue Y, Wang Y X, Xu X D, Wang C J 2023 J. Alloys Compd. 945 169342Google Scholar

    [3]

    Wang J Q, Wu Z, Xing Y Q, Li B J, Huang P, Liu L 2023 Small 19 2207051Google Scholar

    [4]

    Wu S J, Liu H, Wang Q H, Yin X Y, Hou L X 2023 J. Alloys Compd. 945 169372Google Scholar

    [5]

    Xu Y X, Huang Y F, Zhao J, Han X H, Chai C P, Ma H L 2023 J. Alloys Compd. 960 170829Google Scholar

    [6]

    Cai Z, Ma Y F, Zhao K, Yun M C, Wang X Y, Tong Z M, Wang M, Suhr J, Xiao L T, Jia S T, Chen X Y 2023 Chem. Eng. J. 462 142042Google Scholar

    [7]

    Wang Y, Gao X, Wu X M, Zhang W Z, Luo C Y, Liu P B 2019 Chem. Eng. J. 375 121942Google Scholar

    [8]

    Qiang R, Du Y C, Zhao H T, Wang Y, Tian C H, Li Z G, Han X J, Xu P 2015 J. Mater. Chem. A 3 13426Google Scholar

    [9]

    Liu Z Y, Tian H L, Xu R X, Men W W, Su T, Qu Y G, Zhao W, Liu D 2023 Carbon 205 138Google Scholar

    [10]

    Zeng X J, Zhao C, Yin Y C, Nie T L, Xie N H, Yu R H, Stucky G D 2022 Carbon 193 26Google Scholar

    [11]

    Zhang Z W, Cai Z H, Zhang Y, Peng Y L, Wang Z Y, Xia L, Ma S P, Yin Z Z, Wang R F, Cao Y S, Li Z, Huang Y 2021 Carbon 174 484Google Scholar

    [12]

    Che R C, Zhi C Y, Liang C Y, Zhou X G 2006 Appl. Phys. Lett. 88 033105Google Scholar

    [13]

    Fan X X, Zhang Z Y, Wang S J, Zhang J, Xiong S S 2023 Appl. Surf. Sci. 625 157116Google Scholar

    [14]

    Xiu Z L, Li X G, Zhang M Z, Huang B, Ma J Y, Yu J X, Meng X G 2022 J. Alloys Compd. 921 166068Google Scholar

    [15]

    Wang S J, Zhang Z Y, Fan X X, Li Y, Zhang J, Xue L L, Xiong S S 2023 J. Alloys Compd. 960 170724Google Scholar

    [16]

    Hua T X, Guo H, Qin J, Wu Q X, Li L Y, Qian B 2022 RSC Adv. 12 24980Google Scholar

    [17]

    Song S W, Zhang A T, Chen L, Jia Q, Zhou C L, Liu J Q, Wang X X 2021 Carbon 176 279Google Scholar

    [18]

    Li X, Xu D M, Zhou D, Pang S Z, Du C, Darwish M A, Zhou T, Sun S K 2023 Carbon 208 374Google Scholar

    [19]

    Wang X L, Han N, Zhang Y, Shi G M, Zhang Y J, Li D 2022 J. Mater. Sci. Mater. Electron. 33 21091Google Scholar

    [20]

    Guo R, Fan Y C, Wang L J, Jiang W 2020 Carbon 169 214Google Scholar

    [21]

    Zhou X J, Li S C, Zhang M L, Yuan X Y, Wen J W, Xi H, Wu H J, Ma X H 2023 Carbon 204 538Google Scholar

    [22]

    Wang Y, Dou Q, Jiang W, Su K, You J, Yin S, Wang T, Yang J, Li Q 2022 ACS Appl. Nano Mater. 5 9209Google Scholar

    [23]

    Du Q R, Men Q Q, Li R S, Cheng Y W, Zhao B, Che R C 2022 Small 18 2203609Google Scholar

    [24]

    Li M M, Xu Q Y, Jiang W, Farooq A, Qi Y R, Liu L F 2023 Fibers Polym. 24 771Google Scholar

    [25]

    He J, Shan D Y, Yan S Q, Luo H, Cao C, Peng Y H 2019 J. Magn. Magn. Mater. 492 165639Google Scholar

    [26]

    Lei B Y, Hou Y L, Meng W J, Wang Y Q, Yang X X, Ren M X, Zhao D L 2022 Carbon 196 280Google Scholar

    [27]

    Liu M, Zhao B, Pei K, Qian Y T, Yang C D, Liu Y H, Cao H, Zhang J C, Che R C 2023 Small 19 2300363Google Scholar

    [28]

    Zhang R X, Wang L, Xu C Y, Liang C Y, Liu X H, Zhang X F, Che R C 2022 Nano Res. 15 6743Google Scholar

    [29]

    Wang C, Chen N K, Yang T Y, Cheng Q Z, Wu D a, Xiao Y Y, He S L, Song N N 2023 J. Magn. Magn. Mater. 565 170267Google Scholar

    [30]

    Shu X F, Zhou J, Lian W, Jiang Y, Wang Y Q, Shu R W, Liu Y, Han J J, Zhuang Y 2021 J. Alloys Compd. 854 157087Google Scholar

    [31]

    Chen N K, Wang C, Xiao Y Y, Han R, Wu Q, Song N N 2023 J. Alloys Compd. 947 169554Google Scholar

    [32]

    Song N N, Gu S Z, Wu Q, Li C L, Zhou J, Zhang P P, Wang W, Yue M 2018 J. Magn. Magn. Mater. 451 793Google Scholar

    [33]

    Song N N, Yang H T, Liu H L, Ren X, Ding H F, Zhang X Q, Cheng Z H 2013 Sci. Rep. 3 3161Google Scholar

    [34]

    Wu Y H, Tan S J, Liu P Y, Zhang Y, Li P, Ji G B 2023 J. Mater. Sci. Technol. 151 10Google Scholar

    [35]

    Liu Y L, Tian C H, Wang F Y, Hu B, Xu P, Han X J, Du Y C 2023 Chem. Eng. J. 461 141867Google Scholar

    [36]

    Zhang S, Huang Y, Wang J M, Han X P, Zhang G Z, Sun X 2023 Carbon 209 118006Google Scholar

    [37]

    Wang L H, Su S L, Wang Y D 2022 ACS Appl. Nano Mater. 5 17565Google Scholar

    [38]

    Xiao Y Y, Zhang B X, Liao P, Qiu Z H, Song N N, Xu H J 2023 New J. Chem. 47 2575Google Scholar

    [39]

    Liu Q H, Cao Q, Bi H, Liang C Y, Yuan K P, She W, Yang Y J, Che R C 2016 Adv. Mater. 28 486Google Scholar

    [40]

    Yuan M Y, Zhao B, Yang C D, Pei K, Wang L Y, Zhang R X, You W B, Liu X H, Zhang X F, Che R C 2022 Adv. Funct. Mater. 32 2203161Google Scholar

    [41]

    Chen Z H, Zhang Z N, Zhang H Q, Hu D, Ye Z B, Zhang Y, Yu Y, Nie B H, Xi H X, Duan C X 2022 Rare Metals 41 3100Google Scholar

    [42]

    Yamashita T, Hayes P 2008 Appl. Surf. Sci. 254 2441Google Scholar

    [43]

    Deng B W, Liu Z C, Pan F, Xiang Z, Zhang X, Lu W 2021 J. Mater. Chem. A 9 3500Google Scholar

    [44]

    Lv Y H, Ye X Y, Chen S, Ma L, Zhang L, Liang W K, Wu Y P, Wang Q T 2023 Appl. Surf. Sci. 622 156935Google Scholar

    [45]

    Zha L L, Zhang X H, Wu J H, Liu J J, Lan J F, Yang Y, Wu B 2023 Ceram. Int. 49 20672Google Scholar

    [46]

    Yan H Y, Guo Y, Bai X Z, Qi J W, Zhao X Y, Lu H P, Deng L J 2023 Appl. Surf. Sci. 633 157602Google Scholar

    [47]

    Che R C, Peng L M, Duan X F, Chen Q, Liang X L 2004 Adv. Mater. 16 401Google Scholar

    [48]

    Olmedo L, Hourquebie P, Jousse F 1993 Adv. Mater. 5 373Google Scholar

    [49]

    Liu D W, Du Y C, Li Z N, Wang Y H, Xu P, Zhao H H, Wang F Y, Li C L, Han X J 2018 J. Mater. Chem. C 6 9615Google Scholar

    [50]

    Wang C, Han X J, Ping X, Wang J Y, Du Y C, Wang X H, Qin W, Zhang T 2010 J. Phys. Chem. C 114 3196Google Scholar

    [51]

    Ding J, Cheng L G 2021 J. Alloys Compd. 881 160574Google Scholar

    [52]

    Liu W, Duan P T, Ding Y, Zhang B W, Su H L, Zhang X B, Wang J Z, Zou Z Q 2022 Dalton Trans. 51 6597Google Scholar

    [53]

    Zhu X J, Dong Y Y, Pan F, Xiang Z, Liu Z C, Deng B W, Zhang X, Shi Z, Lu W 2021 Compos. Commun. 25 100731Google Scholar

    [54]

    Liu J K, Jia Z R, Zhou W H, Liu X H, Zhang C H, Xu B H, Wu G L 2022 Chem. Eng. J. 429 132253Google Scholar

    [55]

    Dai B S, Qi T, Song M J, Geng M Q, Dai Y X, Qi Y 2022 Nanoscale 14 10456Google Scholar

  • [1] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰. 过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控.  , 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [2] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究.  , 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [3] 赵建宁, 魏东, 吕国正, 王子成, 刘冬欢. 一维异质结构的瞬态热整流效应.  , 2023, 72(4): 044401. doi: 10.7498/aps.72.20222085
    [4] 杜立杰, 陈靖雯, 王荣明. 基于C14H31O3P-Ti3C2/Au肖特基结的自驱动近红外探测器.  , 2023, 72(13): 138502. doi: 10.7498/aps.72.20230480
    [5] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究.  , 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [6] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选.  , 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [7] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望.  , 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [8] 张博宇, 周佳凯, 任程超, 苏祥林, 任慧志, 赵颖, 张晓丹, 侯国付. 硅异质结太阳电池中钝化层和发射层的优化设计.  , 2021, 70(18): 188401. doi: 10.7498/aps.70.20210674
    [9] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究.  , 2021, (): . doi: 10.7498/aps.70.20211048
    [10] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性.  , 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [11] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现.  , 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [12] 何学敏, 钟伟, 都有为. 核壳结构磁性复合纳米材料的可控合成与性能.  , 2018, 67(22): 227501. doi: 10.7498/aps.67.20181027
    [13] 李圣昆, 唐军, 毛宏庆, 王明焕, 陈国彬, 翟超, 张晓明, 石云波, 刘俊. Fe3O4纳米颗粒/聚二甲基硅氧烷复合材料磁电容效应的研究.  , 2014, 63(5): 057501. doi: 10.7498/aps.63.057501
    [14] 罗炳成, 陈长乐, 谢廉. Fe3O4薄膜的电输运及光诱导特性研究.  , 2011, 60(2): 027306. doi: 10.7498/aps.60.027306
    [15] 许红霞, 郝颖萍, 韩荣典, 翁惠民, 杜淮江, 叶邦角. 纳米Fe3 O4 颗粒的正电子湮没谱学研究.  , 2011, 60(6): 067803. doi: 10.7498/aps.60.067803
    [16] 孙明昭, 张淳民, 宋晓平. 新型八边形谐振环金属线复合周期结构左手材料奇异性质研究.  , 2010, 59(8): 5444-5449. doi: 10.7498/aps.59.5444
    [17] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性.  , 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [18] 王敬平, 孟 健. 磁场下合成Fe3O4粉体的隧道磁阻.  , 2008, 57(2): 1197-1201. doi: 10.7498/aps.57.1197
    [19] 王海燕, 李新建. 硅纳米孔柱阵列及其四氧化三铁复合薄膜的湿敏电容特性研究.  , 2005, 54(5): 2220-2225. doi: 10.7498/aps.54.2220
    [20] 都有为, 张毓昌, 陆怀先. 超细Fe3O4的氧化过程.  , 1981, 30(3): 424-427. doi: 10.7498/aps.30.424
计量
  • 文章访问数:  3042
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-08-07
  • 上网日期:  2023-09-05
  • 刊出日期:  2023-11-05

/

返回文章
返回
Baidu
map