-
高压调控是一种能够对材料的结构、电学、光学等物理特性实现高效、连续且可逆变化的实验手段; 拉曼光谱则是一种能够对材料的晶相等结构信息实现精准、快速、无损分析的研究方法. 本文结合了金刚石对顶砧高压技术和原位偏振拉曼光谱技术, 对二硫化铼(ReS2)晶体的拉曼振动模式随压强的演变过程进行了深入研究. 实验发现ReS2的常压相(1T' )在3.04 GPa的压强下转变为一个扭曲1T' 相, 继而在14.24 GPa压强下发生了Re4原子簇的层内形变, 并且在22.08和25.76 GPa分别发生了不同方向的层间无序叠加向有序叠加的转变. 这一系列独特的实验现象充分展现了该二维材料的面内各向异性, 并证实ReS2晶体的各向异性随压强的增加而变得愈发显著. 本文研究表明压强在调节材料性能方面的关键作用, 揭示了ReS2晶体在制备各向异性光学器件和光电器件等方面的潜力.Pressure engineering is known as an efficient, continuous and reversible technique capable of tuning material structure, as well as its electrical, optical, and other physical properties. Raman spectroscopy is used to perform efficient and non-destructive analysis of material structure, and is compatible with the application of external tuning fields. In this work, we combine in-situ pressure engineering and polarized Raman spectroscopy to study the pressure-induced evolution of 18 Raman-active modes in ReS2 crystal. We find that the ReS2 undergoes a structural transformation from 1T' to a distorted-1T' phase at 3.04 GPa, followed by an intralayer deformation of Re4 clusters occurring at 14.24 GPa. Interlayer transitions from disordered to ordered stacking in different in-plane directions are observed at 22.08 GPa and 25.76 GPa when the laser is polarized in different directions, which reflects the pressure-enhanced in-plane anisotropy, i.e. the anisotropy of ReS2 crystal becomes more prominent under high pressure. Our findings demonstrate the effectiveness of pressure in tuning material properties, and shed light on potential applications of ReS2 crystals in anisotropic optical and optoelectronic devices.
-
Keywords:
- pressure engineering /
- rhenium disulfide /
- Raman spectroscopy /
- anisotropy /
- phase transition
[1] Xia J, Wang J, Chao D L, Chen Z, Liu Z, Kuo J L, Yan J X, Shen Z X 2017 Nanoscale 9 7533Google Scholar
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[3] 刘雨亭, 贺文宇, 刘军伟, 邵启明 2021 70 127303Google Scholar
Liu Y T, He W Y, Liu J W, Sao Q M 2021 Acta Phys. Sin. 70 127303Google Scholar
[4] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar
[5] Zeng H L, Cui X D 2015 Chem. Soc. Rev. 44 2629Google Scholar
[6] Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739Google Scholar
[7] Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y S, Ho C H, Yan J Y, Ogletree D F, Aloni S, Ji J, Li S S, Li J B, Peeters F M, Wu J Q 2014 Nat. Commun. 5 3252Google Scholar
[8] Chenet D A, Aslan O B, Huang P Y, Fan C, van der Zande A M, Heinz T F, Hone J C 2015 Nano Lett. 15 5667Google Scholar
[9] Lorchat E, Froehlicher G, Berciaud S 2016 ACS Nano 10 2752Google Scholar
[10] Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y 2015 Nat. Commun. 6 6991Google Scholar
[11] Zhong H X, Gao S Y, Shi J J, Yang L 2015 Phys. Rev. B 92 115438Google Scholar
[12] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫 2021 70 098203Google Scholar
Xu X, Zhang Y, Yan Q, Liu J J, Wang J, Xu X L, Hua D X 2021 Acta Phys. Sin. 70 098203Google Scholar
[13] He J Q, Zhang L, He D W, Wang Y S, He Z Y, Zhao H 2018 Opt. Express 26 21501Google Scholar
[14] Hart L, Dale S, Hoye S, Webb J L, Wolverson D 2016 Nano Lett. 16 1381Google Scholar
[15] Shim J, Oh A, Kang D H, Oh S, Jang S K, Jeon J, Jeon M H, Kim M, Choi C, Lee J, Lee S, Yeom G Y, Song Y J, Park J H 2016 Adv. Mater. 28 6985Google Scholar
[16] Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576Google Scholar
[17] Jin W C, Yeh P C, Zaki N, Zhang D T, Sadowski J T, Al-Mahboob A, van der Zande A M, Chenet D A, Dadap J I, Herman I P, Sutter P, Hone J, Osgood Jr R M 2013 Phys. Rev. Lett. 111 106801Google Scholar
[18] Rahman M, Davey K, Qiao S Z 2017 Adv. Funct. Mater. 27 1606129Google Scholar
[19] Ho C H, Huang Y S, Tiong K K 2001 J. Alloy. Compd. 317 222
[20] Xia J, Li D F, Zhou J D, Yu P, Lin J H, Kuo J L, Li H B, Liu Z, Yan J X, Shen Z X 2017 Small 13 1701887Google Scholar
[21] Calandra M, Mauri F 2011 Phys. Rev. Lett. 106 196406Google Scholar
[22] Zhao Z, Zhang H J, Yuan H T, Wang S B, Lin Y, Zeng Q S, Xu G, Liu Z X, Solanki G K, Patel K D, Cui Y, Hwang H Y, Mao W L 2015 Nat. Commun. 6 7312Google Scholar
[23] Xia J, Yan J X, Wang Z H, He Y M, Gong Y J, Chen W Q, Sum T C, Liu Z, Ajayan P M, Shen Z X 2021 Nat. Phys. 17 92Google Scholar
[24] Alidoust M, Halterman K, Zyuzin A A 2017 Phys. Rev. B 95 155124Google Scholar
[25] Hou D B, Ma Y Z, Du J G, Yan J Y, Ji C, Zhu H Y 2010 J. Phys. Chem. Solids 71 1571Google Scholar
[26] Zhou D W, Zhou Y H, Pu C Y, Chen X L, Lu P C, Wang X F, An C, Zhou Y, Miao F, Ho C H, Sun J, Yang Z R, Xing D Y 2017 npj Quantum Mater. 2 19Google Scholar
[27] Kertesz M, Hoffmann R 1984 J. Am. Chem. Soc. 106 3453Google Scholar
[28] Murray H H, Kelty S P, Chianelli R R, Day C S 1994 Inorg. Chem. 33 4418Google Scholar
[29] Wolverson D, Crampin S, Kazemi A S, Ilie A, Bending S J 2014 ACS Nano 8 11154Google Scholar
[30] Feng Y Q, Zhou W, Wang Y J, Zhou J, Liu E F, Fu Y J, Ni Z H, Wu X L, Yuan H T, Miao F, Wang B G, Wan X G, Xing D Y 2015 Phys. Rev. B 92 054110Google Scholar
[31] Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W, Zhao Y S 2018 Phys. Rev. B 97 235202Google Scholar
[32] Sheremetyeva N, Tristant D, Yoshimura A, Gray J, Liang L B, Meunier V 2019 Phys. Rev. B 100 214101Google Scholar
[33] Saha P, Ghosh B, Mazumder A, Glazyrin K, Mukherjee G D 2020 J. Appl. Phys. 128 085904Google Scholar
[34] Ibáñez-Insa J, Wózniak T, Oliva R, Popescu C, Hernández S, López-Vidrier J 2021 Minerals 11 207
[35] Yan Y L, Jin C L, Wang J, Qin T R, Li F F, Wang K, Han Y H, Gao C X 2017 J. Phys. Chem. Lett. 8 3648Google Scholar
[36] Liu K H, Zhang L M, Cao T, Jin C H, Qiu D A, Zhou Q, Zettl A, Yang P D, Louie S G, Wang F 2014 Nat. Commun. 5 4966Google Scholar
[37] Zhao Q Y, Guo Y H, Zhou Y X, Xu X, Ren Z Y, Bai J T, Xu X L 2017 J. Phys. Chem. C 121 23744Google Scholar
[38] Feng Y Q, Sun H Y, Sun J H, Shen Y, You Y 2019 Mater. Today Commun. 21 100684Google Scholar
[39] Chi Z H, Chen X L, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C L, Chu S Q, Li Y C, Zhao J G, Kagayama T, Ma Y M, Yang Z R 2014 Phys. Rev. Lett. 120 037002
[40] Mao H K, Chen B, Chen J H, Li K, Lin J F, Yang W G, Zheng H Y 2016 Matter Radiat. Extrem. 1 59Google Scholar
-
图 1 (a) 原位高压偏振拉曼光谱系统测试图; (b) ReS2薄片的光学照片, 绿色箭头为入射激光的两个正交偏振方向; (c) 封装样品后的金刚石对顶砧示意图; (d) ReS2晶体结构俯视图, 黑色矩形示意为结构中的铼链, θ为入射激光偏振方向与ReS2晶体b轴的夹角,
$\otimes $ 为激光与原子面垂直的入射方向; (e) ReS2晶体结构侧视图Fig. 1. (a) Schematic illustration of the in-situ high pressure polarized Raman measurement system; (b) optical image of the ReS2 flake being measured (The green arrows indicate the polarization directions of the incident laser); (c) illustration of a diamond anvil cell (DAC) loaded with the ReS2 sample; (d) top view of the ReS2 crystal structure (The black rectangle indicates the Re-Re chain. θ is defined as the angle between the polarization of the incident laser and the b-axis of ReS2.
$\otimes $ represents the incident direction of the laser (into the page)); (e) side view of the ReS2 crystal structure.图 2 两种正交入射激光偏振方向下ReS2的拉曼光谱, 入射激光波长为532 nm; α为入射激光偏振方向(白色箭头)相对于实验台坐标轴x (白色虚线)的夹角, 蓝色为α = 0°, 红色为α = 90°
Fig. 2. Raman spectra of an ReS2 flake with the incident laser polarized parallel (top, α = 0°) and perpendicular (bottom, α = 90°) to the x-axis of the experimental system. The wavelength of excitation laser is 532 nm. α is defined as the angle of the incident laser polarization direction (white arrow) with respect to the x-axis (white dotted line).
图 3 ReS2晶体的原位高压拉曼光谱(0—30 GPa) (a) α = 0°; (b) α = 90°. *区域为硅油的拉曼信号; 深蓝色、绿色和橙色虚线分别代表第一个相变点、第二个相变点以及第三个相变点时特征拉曼振动模式的变化趋势
Fig. 3. In-situ high pressure Raman measurements of ReS2 crystal (0–30 GPa): (a) α = 0°; (b) α = 90°. The bump labeled with * is the Raman signal from silicone oil. The dark blue, green, and orange dotted lines represent the evolution of the key Raman modes revealing the first, second, and third phase transitions, respectively.
图 4 ReS2晶体的部分拉曼振动模式频率随压强的变化 (0—30 GPa) (a) α = 0°; (b) α = 90°. 深蓝色, 绿色和橙色数据线分别代表第一个相变点, 第二个相变点以及第三个相变点时特征拉曼振动模式的变化趋势; 灰色数据线表示文中不进行重点讨论的拉曼振动模式
Fig. 4. Pressure dependence of Raman mode frequencies for the ReS2 sample (0–30 GPa): (a) α = 0°; (b) α = 90. The dark blue, green, and orange data lines represent the variation trend of featured Raman modes at the first, second, and third phase transitions, respectively. The gray data lines represent Raman modes that can be observed throughout the entire pressure range.
表 1 ReS2晶体的18个拉曼振动模式的属性
Table 1. Assignment of 18 Raman active modes in ReS2 crystal.
Serial number Symmetry Raman frequency/cm–1 1 Ag-like 137.5 2 Ag-like 142.6 3 Eg-like 150.2 4 Eg-like 160.4 5 Eg-like 211.0 6 Eg-like 233.8 7 Cp 274.6 8 Cp 280.9 9 Eg-like 305.0 10 Eg-like 307.8 11 Cp 317.4 12 Cp 321.7 13 Cp 345.6 14 Cp 365.9 15 Cp 375.4 16 Cp 404.5 17 Ag-like 426.4 18 Ag-like 436.1 -
[1] Xia J, Wang J, Chao D L, Chen Z, Liu Z, Kuo J L, Yan J X, Shen Z X 2017 Nanoscale 9 7533Google Scholar
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[3] 刘雨亭, 贺文宇, 刘军伟, 邵启明 2021 70 127303Google Scholar
Liu Y T, He W Y, Liu J W, Sao Q M 2021 Acta Phys. Sin. 70 127303Google Scholar
[4] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar
[5] Zeng H L, Cui X D 2015 Chem. Soc. Rev. 44 2629Google Scholar
[6] Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739Google Scholar
[7] Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y S, Ho C H, Yan J Y, Ogletree D F, Aloni S, Ji J, Li S S, Li J B, Peeters F M, Wu J Q 2014 Nat. Commun. 5 3252Google Scholar
[8] Chenet D A, Aslan O B, Huang P Y, Fan C, van der Zande A M, Heinz T F, Hone J C 2015 Nano Lett. 15 5667Google Scholar
[9] Lorchat E, Froehlicher G, Berciaud S 2016 ACS Nano 10 2752Google Scholar
[10] Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y 2015 Nat. Commun. 6 6991Google Scholar
[11] Zhong H X, Gao S Y, Shi J J, Yang L 2015 Phys. Rev. B 92 115438Google Scholar
[12] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫 2021 70 098203Google Scholar
Xu X, Zhang Y, Yan Q, Liu J J, Wang J, Xu X L, Hua D X 2021 Acta Phys. Sin. 70 098203Google Scholar
[13] He J Q, Zhang L, He D W, Wang Y S, He Z Y, Zhao H 2018 Opt. Express 26 21501Google Scholar
[14] Hart L, Dale S, Hoye S, Webb J L, Wolverson D 2016 Nano Lett. 16 1381Google Scholar
[15] Shim J, Oh A, Kang D H, Oh S, Jang S K, Jeon J, Jeon M H, Kim M, Choi C, Lee J, Lee S, Yeom G Y, Song Y J, Park J H 2016 Adv. Mater. 28 6985Google Scholar
[16] Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576Google Scholar
[17] Jin W C, Yeh P C, Zaki N, Zhang D T, Sadowski J T, Al-Mahboob A, van der Zande A M, Chenet D A, Dadap J I, Herman I P, Sutter P, Hone J, Osgood Jr R M 2013 Phys. Rev. Lett. 111 106801Google Scholar
[18] Rahman M, Davey K, Qiao S Z 2017 Adv. Funct. Mater. 27 1606129Google Scholar
[19] Ho C H, Huang Y S, Tiong K K 2001 J. Alloy. Compd. 317 222
[20] Xia J, Li D F, Zhou J D, Yu P, Lin J H, Kuo J L, Li H B, Liu Z, Yan J X, Shen Z X 2017 Small 13 1701887Google Scholar
[21] Calandra M, Mauri F 2011 Phys. Rev. Lett. 106 196406Google Scholar
[22] Zhao Z, Zhang H J, Yuan H T, Wang S B, Lin Y, Zeng Q S, Xu G, Liu Z X, Solanki G K, Patel K D, Cui Y, Hwang H Y, Mao W L 2015 Nat. Commun. 6 7312Google Scholar
[23] Xia J, Yan J X, Wang Z H, He Y M, Gong Y J, Chen W Q, Sum T C, Liu Z, Ajayan P M, Shen Z X 2021 Nat. Phys. 17 92Google Scholar
[24] Alidoust M, Halterman K, Zyuzin A A 2017 Phys. Rev. B 95 155124Google Scholar
[25] Hou D B, Ma Y Z, Du J G, Yan J Y, Ji C, Zhu H Y 2010 J. Phys. Chem. Solids 71 1571Google Scholar
[26] Zhou D W, Zhou Y H, Pu C Y, Chen X L, Lu P C, Wang X F, An C, Zhou Y, Miao F, Ho C H, Sun J, Yang Z R, Xing D Y 2017 npj Quantum Mater. 2 19Google Scholar
[27] Kertesz M, Hoffmann R 1984 J. Am. Chem. Soc. 106 3453Google Scholar
[28] Murray H H, Kelty S P, Chianelli R R, Day C S 1994 Inorg. Chem. 33 4418Google Scholar
[29] Wolverson D, Crampin S, Kazemi A S, Ilie A, Bending S J 2014 ACS Nano 8 11154Google Scholar
[30] Feng Y Q, Zhou W, Wang Y J, Zhou J, Liu E F, Fu Y J, Ni Z H, Wu X L, Yuan H T, Miao F, Wang B G, Wan X G, Xing D Y 2015 Phys. Rev. B 92 054110Google Scholar
[31] Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W, Zhao Y S 2018 Phys. Rev. B 97 235202Google Scholar
[32] Sheremetyeva N, Tristant D, Yoshimura A, Gray J, Liang L B, Meunier V 2019 Phys. Rev. B 100 214101Google Scholar
[33] Saha P, Ghosh B, Mazumder A, Glazyrin K, Mukherjee G D 2020 J. Appl. Phys. 128 085904Google Scholar
[34] Ibáñez-Insa J, Wózniak T, Oliva R, Popescu C, Hernández S, López-Vidrier J 2021 Minerals 11 207
[35] Yan Y L, Jin C L, Wang J, Qin T R, Li F F, Wang K, Han Y H, Gao C X 2017 J. Phys. Chem. Lett. 8 3648Google Scholar
[36] Liu K H, Zhang L M, Cao T, Jin C H, Qiu D A, Zhou Q, Zettl A, Yang P D, Louie S G, Wang F 2014 Nat. Commun. 5 4966Google Scholar
[37] Zhao Q Y, Guo Y H, Zhou Y X, Xu X, Ren Z Y, Bai J T, Xu X L 2017 J. Phys. Chem. C 121 23744Google Scholar
[38] Feng Y Q, Sun H Y, Sun J H, Shen Y, You Y 2019 Mater. Today Commun. 21 100684Google Scholar
[39] Chi Z H, Chen X L, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C L, Chu S Q, Li Y C, Zhao J G, Kagayama T, Ma Y M, Yang Z R 2014 Phys. Rev. Lett. 120 037002
[40] Mao H K, Chen B, Chen J H, Li K, Lin J F, Yang W G, Zheng H Y 2016 Matter Radiat. Extrem. 1 59Google Scholar
计量
- 文章访问数: 5924
- PDF下载量: 135
- 被引次数: 0