-
The high-Tc copper-oxide superconductors (cuprates) break the limit of superconducting transition temperature predicted by the BCS theory based on electron-phonon coupling, and thus it opens a new chapter in the superconductivity field. According to the valence of substitutents, the cuprates could be categorized into electron-and hole-doped types. So far, an enormous number of high-Tc cuprate superconductors have been intensively studied, most of them are hole-doped. In comparison with the hole-doped cuprates, the advantages of electron-doped cuprates (e.g. lower upper critical field, less-debated origin of “pseudogap”, etc.) make this family of compounds more suitable for unveiling the ground states. However, the difficulties in sample syntheses prevent a profound research in last several decades, in which the role of annealing process during sample preparation has been a big challenge. In this review article, a brief comparison between the electron-doped cuprates and the hole-doped counterparts is made from the aspect of electronic phase diagram, so as to point out the necessity of intensive work on the electron-doped cuprates. Since the electronic properties are highly sensitive to the oxygen content of the sample, the annealing process in sample preparation, which varies the oxygen content, turns out to be a key issue in constructing the phase diagram. Meanwhile, the distinction between electron-and hole-doped cuprates is also manifested in their lattice structures. It has been approved that the stability of the superconducting phase of electron-doped cuprates depends on the tolerance factor t (affected by dopants) doping concentration, temperature, and oxygen position. Yet it is known that the annealing process can vary the oxygen content as well as its position, the details how to adjust oxygen remain unclear. Recently, the experiment on Pr2-xCexCuO4-δ suggests that the oxygen position can be tuned by pressure. And, our new results on [La1.9Ce0.1CuO4-δ/SrCoO3-δ]N superlattices indicate that more factors, like strain, should be taken into account. In addition, the superconductivity in the parent compounds of electron-doped cuprates has emerged by employing a so-called “protective annealing” process. Compared to the traditional one-step annealing process, this new procedure contains an extra annealing step at higher temperature at partial oxygen pressure. In consideration of the new discoveries, as well as the Tc enhancement observed in multilayered structures of electron-doped cuprates by traditional annealing, a promising explanation based on the idea of repairing the oxygen defects in copper oxide planes is proposed for the superconductivity in parent compounds. Finally, we expect a comprehensive understanding of the annealing process, especially the factors such as atmosphere, temperature, and strain, which are not only related to the sample quality, but also to a precise phase diagram of the electron-doped cuprates.
-
Keywords:
- high-Tc film /
- cuprate superconductor /
- electron-doped /
- annealing
[1] Pomjakushina E 2014 Supercond. Sci. Technol. 27 120501
[2] Onnes H K 1911 Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam 14 113
[3] Schrieffer J R, Brooks J S, 2007 Handbook of high-temperature superconductivity (Springer Science+ Business Media, LLC)
[4] Bednorz J G, Mller K A 1986 Z. Phys. B Con. Mat. 64 189
[5] Chu C W, Hor P H, Meng R L, Gao L, Huang Z J 1987 Science 235 567
[6] Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Y 1987 Chin. Sci. Bull. 32 177 (in Chinese) [赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘金湘, 陈庚华, 李山林, 郭树权, 何业冶 1987 科学通报 32 177]
[7] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908
[8] Maeda H, Tanaka Y, Fukutomi M, Asano T 1988 Jpn. J. Appl. Phys. 27 L209
[9] Sheng Z Z, Hermann A M 1988 Nature 332 55
[10] Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56
[11] Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260
[12] Tokura Y, Takagi H, Uchida S 1989 Nature 337 345
[13] Armitage N P, Fournier P, Greene R L 2010 Rev. Mod. Phys. 82 2421
[14] Jin K 2008 Ph. D. Dissertation (Beijing: Institute of Physics, CAS) (in Chinese) [金魁 2008 博士学位论文 (北京: 中国科学院物理研究所)]
[15] Witt T J 1988 Phys. Rev. Lett. 61 1423
[16] Vanbentum P J M, Hoevers H F C, Vankempen H, Vandeleemput L E C, Denivelle M J M F, Schreurs L W M, Smokers R T M, Teunissen P A A 1988 Physica C 153 1718
[17] Gammel P L, Polakos P A, Rice C E, Harriott L R, Bishop D J 1990 Phys. Rev. B 41 2593
[18] Gough C E, Colclough M S, Forgan E M, Jordan R G, Keene M, Muirhead C M, Rae A I M, Thomas N, Abell J S, Sutton S 1987 Nature 326 855
[19] Campuzano J C, Ding H, Norman M R, Randeira M, Bellman A F, Mochiku T, Kadowaki K 1996 Phys. Rev. B 53 14737
[20] Takigawa M, Hammel P C, Heffner R H, Fisk Z 1989 Phys. Rev. B 39 7371
[21] Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473
[22] Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969
[23] Hardy W N, Bonn D A, Morgan D C, Liang R X, Zhang K 1993 Phys. Rev. Lett. 70 3999
[24] Wright D A, Emerson J P, Woodfield B F, Gordon J E, Fisher R A, Phillips N E 1999 Phys. Rev. Lett. 82 1550
[25] Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520
[26] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[27] Paglione J, Greene R L 2010 Nat. Phys. 6 645
[28] Norman M R 2011 Science 332 196
[29] Cooper R A, Wang Y, Vignolle B, Lipscombe O J, Hayden S M, Tanabe Y, Adachi T, Koike Y, Nohara M, Takagi H, Proust C, Hussey N E 2009 Science 323 603
[30] Jin K, Butch N P, Kirshenbaum K, Paglione J, Greene R L 2011 Nature 476 73
[31] Butch N P, Jin K, Kirshenbaum K, Greene R L, Paglione J 2012 Proc. Natl. Acad. Sci. 109 8440
[32] Matsumoto O, Utsuki A, Tsukada A, Yamamoto H, Manabe T, Naito M 2008 Physica C 468 1148
[33] Krockenberger Y, Irie H, Matsumoto O, Yamagami K, Mitsuhashi M, Tsukada A, Naito M, Yamamoto H 2013 Sci. Rep. 3 02235
[34] Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y, Uchida S 1995 Nature 375 561
[35] Taillefer L 2010 Annu. Rev. Cond. Matter Phys. 1 51
[36] LeBoeuf D, Doiron-Leyraud N, Vignolle B, Sutherland M, Ramshaw B J, Levallois J, Daou R, Laliberté F, Cyr-Choinière O, Chang J, Jo Y J, Balicas L, Liang R, Bonn D A, Hardy W N, Proust C, Taillefer L 2011 Phys. Rev. B 83 054506
[37] da Silva Neto E H, Comin R, He F, Sutarto R, Jiang Y, Greene R L, Sawatzky G A, Damascelli A 2015 Science 347 282
[38] LeBoeuf D, Doiron-Leyraud N, Levallois J, Daou R, Bonnemaison J B, Hussey N E, Balicas L, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Adachi S, Proust C, Taillefer L 2007 Nature 450 533
[39] Barisic N, Badoux S, Chan M K, Dorow C, Tabis W, Vignolle B, Yu G, Beard J, Zhao X, Proust C, Greven M 2013 Nat. Phys. 9 761
[40] Armitage N P, Ronning F, Lu D H, Kim C, Damascelli A, Shen K M, Feng D L, Eisaki H, Shen Z X, Mang P K, Kaneko N, Greven M, Onose Y, Taguchi Y, Tokura Y 2002 Phys. Rev. Lett. 88 257001
[41] Helm T, Kartsovnik M V, Bartkowiak M, Bittner N, Lambacher M, Erb A, Wosnitza J, Gross R 2009 Phys. Rev. Lett. 103 157002
[42] Helm T, Kartsovnik M V, Sheikin I, Bartkowiak M, Wolff-Fabris F, Bittner N, Biberacher W, Lambacher M, Erb A, Wosnitza J, Gross R 2010 Phys. Rev. Lett. 105 247002
[43] Sebastian S E, Harrison N, Balakirev F F, Altarawneh M M, Goddard P A, Liang R X, Bonn D A, Hardy W N, Lonzarich G G 2014 Nature 511 61
[44] Riggs S C, Vafek O, Kemper J B, Betts J B, Migliori A, Balakirev F F, Hardy W N, Liang R X, Bonn D A, Boebinger G S 2011 Nat. Phys. 7 332
[45] Jiang W, Mao S, Xi X, Jiang X, Peng J, Venkatesan T, Lobb C, Greene R 1994 Phys. Rev. Lett. 73 1291
[46] Lin J, Millis A J 2005 Phys. Rev. B 72 214506
[47] Xiang T, Luo H G, Lu D H, Shen K M, Shen Z X 2009 Phys. Rev. B 79 014524
[48] Horio M, Adachi T, Mori Y, Takahashi A, Yoshida T, Suzuki H, Ambolode II L C C, Okazaki K, Ono K, Kumigashira H, Anzai H, Arita M, Namatame H, Taniguchi M, Ootsuki D, Sawada K, Takahashi M, Mizokawa T, Koike Y, Fujimori A 2015 arXiv:1502.03395 cond-mat
[49] Gurvitch M, Fiory A T 1987 Phys. Rev. Lett. 59 1337
[50] Moriya T, Ueda K 2000 Adv. Phys. 49 555
[51] Rosch A 2000 Phys. Rev. B 62 4945
[52] Doiron-Leyraud N, Auban-Senzier P, de Cotret S R, Bourbonnais C, Jerome D, Bechgaard K, Taillefer L 2009 Phys. Rev. B 80 214531
[53] Taillefer L 2010 Annual Review of Condensed Matter Physics, Vol 1 51
[54] Zhou W Z, Liang W Y 1999 Basic Research on High Temperature Superconductivity (Shanghai: Shanghai Science and Technology Publishers) [周午纵, 梁维耀 1999 高温超导基础研究 (上海: 上海科学技术出版社)]
[55] Bringley J F, Trail S S, Scott B A 1990 J. Solid State Chem. 86 310
[56] Manthiram A, Goodenough J B 1990 J. Solid State Chem. 87 402
[57] Naito M, Hepp M 2000 Jpn. J. Appl. Phys. 39 L485
[58] Naito M, Tsukada A, Greibe T, Sato H 2002 Superconducting and Related Oxides: Physics and Nanoengineering V 4811 140
[59] Takayamamuromachi E, Uchida Y, Kato K 1990 Physica C 165 147
[60] Yamada T, Kinoshita K, Shibata H 1994 Jpn. J. Appl. Phys. 33 L168
[61] Oka K, Shibata H, Kashiwaya S, Eisaki H 2003 Physica C 388 389
[62] Manthiram A, Goodenough J B 1991 J. Solid State Chem. 92 231
[63] Kim J S, Gaskell D R 1993 Physica. C 209 381
[64] Jiang W, Peng J L, Li Z Y, Greene R L 1993 Phys. Rev. B 47 8151
[65] Wang Y L, Huang Y, Shan L, Li S L, Dai P C, Ren C, Wen H H 2009 Phys. Rev. B 80 094513
[66] Jiang W, Mao S N, Xi X X, Jiang X G, Peng J L, Venkatesan T, Lobb C J, Greene R L 1994 Phys. Rev. Lett. 73 1291
[67] Higgins J S, Dagan Y, Barr M C, Weaver B D, Greene R L 2006 Phys. Rev. B 73 104510
[68] Yu W, Higgins J S, Bach P, Greene R L 2007 Phys. Rev. B 76 020503
[69] Kang H J, Dai P, Campbell B J, Chupas P J, Rosenkranz S, Lee P L, Huang Q, Li S, Komiya S, Ando Y 2007 Nature Mater. 6 224
[70] Jin K, Yuan J, Zhao L, Wu H, Qi X, Zhu B, Cao L, Qiu X, Xu B, Duan X, Zhao B 2006 Phys. Rev. B 74 094518
[71] Roberge G, Charpentier S, Godin-Proulx S, Rauwel P, Truong K D, Fournier P 2009 J. Cryst. Growth 311 1340
[72] Xu X Q, Mao S N, Jiang W, Peng J L, Greene R L 1996 Phys. Rev. B 53 871
[73] Radaelli P G, Jorgensen J D, Schultz A J, Peng J L, Greene R L 1994 Phys. Rev. B 49 15322
[74] Schultz A J, Jorgensen J D, Peng J L, Greene R L 1996 Phys. Rev. B 53 5157
[75] Rotundu C R, Struzhkin V V, Somayazulu M S, Sinogeikin S, Hemley R J, Greene R L 2013 Phys. Rev. B 87 024506
[76] Riou G, Richard P, Jandl S, Poirier M, Fournier P, Nekvasil V, Barilo S N, Kurnevich L A 2004 Phys. Rev. B 69 024511
[77] Wang Y L, Huang Y, Shan L, Li S L, Dai P C, Ren C, Wen H H 2009 Physical Review B 80 094513
[78] Long Y W, Kaneko Y, Ishiwata S, Taguchi Y, Tokura Y 2011 J. Phys-condens. Mater. 23 245601
[79] Brinkmann M, Rex T, Bach H, Westerholt K 1995 Phys. Rev. Lett. 74 4927
[80] Kojima K M, Krockenberger Y, Yamauchi I, Miyazaki M, Hiraishi M, Koda A, Kadono R, Kumai R, Yamamoto H, Ikeda A, Naito M 2014 Phys. Rev. B 89 180508
[81] Hord R, Luetkens H, Pascua G, Buckow A, Hofmann K, Krockenberger Y, Kurian J, Maeter H, Klauss H H, Pomjakushin V, Suter A, Albert B, Alff L 2010 Phys. Rev. B 82 180508(R)
[82] Weber C, Haule K, Kotliar G 2010 Nat. Phys. 6 574
[83] Sawa A, Kawasaki M, Takagi H, Tokura Y 2002 Phys. Rev. B 66 014531
[84] Jin K, Bach P, Zhang X H, Grupel U, Zohar E, Diamant I, Dagan Y, Smadici S, Abbamonte P, Greene R L 2011 Phys. Rev. B 83 060511
[85] Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A, Bozovic I 2008 Nature 455 782
-
[1] Pomjakushina E 2014 Supercond. Sci. Technol. 27 120501
[2] Onnes H K 1911 Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam 14 113
[3] Schrieffer J R, Brooks J S, 2007 Handbook of high-temperature superconductivity (Springer Science+ Business Media, LLC)
[4] Bednorz J G, Mller K A 1986 Z. Phys. B Con. Mat. 64 189
[5] Chu C W, Hor P H, Meng R L, Gao L, Huang Z J 1987 Science 235 567
[6] Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Y 1987 Chin. Sci. Bull. 32 177 (in Chinese) [赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘金湘, 陈庚华, 李山林, 郭树权, 何业冶 1987 科学通报 32 177]
[7] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908
[8] Maeda H, Tanaka Y, Fukutomi M, Asano T 1988 Jpn. J. Appl. Phys. 27 L209
[9] Sheng Z Z, Hermann A M 1988 Nature 332 55
[10] Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56
[11] Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260
[12] Tokura Y, Takagi H, Uchida S 1989 Nature 337 345
[13] Armitage N P, Fournier P, Greene R L 2010 Rev. Mod. Phys. 82 2421
[14] Jin K 2008 Ph. D. Dissertation (Beijing: Institute of Physics, CAS) (in Chinese) [金魁 2008 博士学位论文 (北京: 中国科学院物理研究所)]
[15] Witt T J 1988 Phys. Rev. Lett. 61 1423
[16] Vanbentum P J M, Hoevers H F C, Vankempen H, Vandeleemput L E C, Denivelle M J M F, Schreurs L W M, Smokers R T M, Teunissen P A A 1988 Physica C 153 1718
[17] Gammel P L, Polakos P A, Rice C E, Harriott L R, Bishop D J 1990 Phys. Rev. B 41 2593
[18] Gough C E, Colclough M S, Forgan E M, Jordan R G, Keene M, Muirhead C M, Rae A I M, Thomas N, Abell J S, Sutton S 1987 Nature 326 855
[19] Campuzano J C, Ding H, Norman M R, Randeira M, Bellman A F, Mochiku T, Kadowaki K 1996 Phys. Rev. B 53 14737
[20] Takigawa M, Hammel P C, Heffner R H, Fisk Z 1989 Phys. Rev. B 39 7371
[21] Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473
[22] Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969
[23] Hardy W N, Bonn D A, Morgan D C, Liang R X, Zhang K 1993 Phys. Rev. Lett. 70 3999
[24] Wright D A, Emerson J P, Woodfield B F, Gordon J E, Fisher R A, Phillips N E 1999 Phys. Rev. Lett. 82 1550
[25] Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520
[26] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[27] Paglione J, Greene R L 2010 Nat. Phys. 6 645
[28] Norman M R 2011 Science 332 196
[29] Cooper R A, Wang Y, Vignolle B, Lipscombe O J, Hayden S M, Tanabe Y, Adachi T, Koike Y, Nohara M, Takagi H, Proust C, Hussey N E 2009 Science 323 603
[30] Jin K, Butch N P, Kirshenbaum K, Paglione J, Greene R L 2011 Nature 476 73
[31] Butch N P, Jin K, Kirshenbaum K, Greene R L, Paglione J 2012 Proc. Natl. Acad. Sci. 109 8440
[32] Matsumoto O, Utsuki A, Tsukada A, Yamamoto H, Manabe T, Naito M 2008 Physica C 468 1148
[33] Krockenberger Y, Irie H, Matsumoto O, Yamagami K, Mitsuhashi M, Tsukada A, Naito M, Yamamoto H 2013 Sci. Rep. 3 02235
[34] Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y, Uchida S 1995 Nature 375 561
[35] Taillefer L 2010 Annu. Rev. Cond. Matter Phys. 1 51
[36] LeBoeuf D, Doiron-Leyraud N, Vignolle B, Sutherland M, Ramshaw B J, Levallois J, Daou R, Laliberté F, Cyr-Choinière O, Chang J, Jo Y J, Balicas L, Liang R, Bonn D A, Hardy W N, Proust C, Taillefer L 2011 Phys. Rev. B 83 054506
[37] da Silva Neto E H, Comin R, He F, Sutarto R, Jiang Y, Greene R L, Sawatzky G A, Damascelli A 2015 Science 347 282
[38] LeBoeuf D, Doiron-Leyraud N, Levallois J, Daou R, Bonnemaison J B, Hussey N E, Balicas L, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Adachi S, Proust C, Taillefer L 2007 Nature 450 533
[39] Barisic N, Badoux S, Chan M K, Dorow C, Tabis W, Vignolle B, Yu G, Beard J, Zhao X, Proust C, Greven M 2013 Nat. Phys. 9 761
[40] Armitage N P, Ronning F, Lu D H, Kim C, Damascelli A, Shen K M, Feng D L, Eisaki H, Shen Z X, Mang P K, Kaneko N, Greven M, Onose Y, Taguchi Y, Tokura Y 2002 Phys. Rev. Lett. 88 257001
[41] Helm T, Kartsovnik M V, Bartkowiak M, Bittner N, Lambacher M, Erb A, Wosnitza J, Gross R 2009 Phys. Rev. Lett. 103 157002
[42] Helm T, Kartsovnik M V, Sheikin I, Bartkowiak M, Wolff-Fabris F, Bittner N, Biberacher W, Lambacher M, Erb A, Wosnitza J, Gross R 2010 Phys. Rev. Lett. 105 247002
[43] Sebastian S E, Harrison N, Balakirev F F, Altarawneh M M, Goddard P A, Liang R X, Bonn D A, Hardy W N, Lonzarich G G 2014 Nature 511 61
[44] Riggs S C, Vafek O, Kemper J B, Betts J B, Migliori A, Balakirev F F, Hardy W N, Liang R X, Bonn D A, Boebinger G S 2011 Nat. Phys. 7 332
[45] Jiang W, Mao S, Xi X, Jiang X, Peng J, Venkatesan T, Lobb C, Greene R 1994 Phys. Rev. Lett. 73 1291
[46] Lin J, Millis A J 2005 Phys. Rev. B 72 214506
[47] Xiang T, Luo H G, Lu D H, Shen K M, Shen Z X 2009 Phys. Rev. B 79 014524
[48] Horio M, Adachi T, Mori Y, Takahashi A, Yoshida T, Suzuki H, Ambolode II L C C, Okazaki K, Ono K, Kumigashira H, Anzai H, Arita M, Namatame H, Taniguchi M, Ootsuki D, Sawada K, Takahashi M, Mizokawa T, Koike Y, Fujimori A 2015 arXiv:1502.03395 cond-mat
[49] Gurvitch M, Fiory A T 1987 Phys. Rev. Lett. 59 1337
[50] Moriya T, Ueda K 2000 Adv. Phys. 49 555
[51] Rosch A 2000 Phys. Rev. B 62 4945
[52] Doiron-Leyraud N, Auban-Senzier P, de Cotret S R, Bourbonnais C, Jerome D, Bechgaard K, Taillefer L 2009 Phys. Rev. B 80 214531
[53] Taillefer L 2010 Annual Review of Condensed Matter Physics, Vol 1 51
[54] Zhou W Z, Liang W Y 1999 Basic Research on High Temperature Superconductivity (Shanghai: Shanghai Science and Technology Publishers) [周午纵, 梁维耀 1999 高温超导基础研究 (上海: 上海科学技术出版社)]
[55] Bringley J F, Trail S S, Scott B A 1990 J. Solid State Chem. 86 310
[56] Manthiram A, Goodenough J B 1990 J. Solid State Chem. 87 402
[57] Naito M, Hepp M 2000 Jpn. J. Appl. Phys. 39 L485
[58] Naito M, Tsukada A, Greibe T, Sato H 2002 Superconducting and Related Oxides: Physics and Nanoengineering V 4811 140
[59] Takayamamuromachi E, Uchida Y, Kato K 1990 Physica C 165 147
[60] Yamada T, Kinoshita K, Shibata H 1994 Jpn. J. Appl. Phys. 33 L168
[61] Oka K, Shibata H, Kashiwaya S, Eisaki H 2003 Physica C 388 389
[62] Manthiram A, Goodenough J B 1991 J. Solid State Chem. 92 231
[63] Kim J S, Gaskell D R 1993 Physica. C 209 381
[64] Jiang W, Peng J L, Li Z Y, Greene R L 1993 Phys. Rev. B 47 8151
[65] Wang Y L, Huang Y, Shan L, Li S L, Dai P C, Ren C, Wen H H 2009 Phys. Rev. B 80 094513
[66] Jiang W, Mao S N, Xi X X, Jiang X G, Peng J L, Venkatesan T, Lobb C J, Greene R L 1994 Phys. Rev. Lett. 73 1291
[67] Higgins J S, Dagan Y, Barr M C, Weaver B D, Greene R L 2006 Phys. Rev. B 73 104510
[68] Yu W, Higgins J S, Bach P, Greene R L 2007 Phys. Rev. B 76 020503
[69] Kang H J, Dai P, Campbell B J, Chupas P J, Rosenkranz S, Lee P L, Huang Q, Li S, Komiya S, Ando Y 2007 Nature Mater. 6 224
[70] Jin K, Yuan J, Zhao L, Wu H, Qi X, Zhu B, Cao L, Qiu X, Xu B, Duan X, Zhao B 2006 Phys. Rev. B 74 094518
[71] Roberge G, Charpentier S, Godin-Proulx S, Rauwel P, Truong K D, Fournier P 2009 J. Cryst. Growth 311 1340
[72] Xu X Q, Mao S N, Jiang W, Peng J L, Greene R L 1996 Phys. Rev. B 53 871
[73] Radaelli P G, Jorgensen J D, Schultz A J, Peng J L, Greene R L 1994 Phys. Rev. B 49 15322
[74] Schultz A J, Jorgensen J D, Peng J L, Greene R L 1996 Phys. Rev. B 53 5157
[75] Rotundu C R, Struzhkin V V, Somayazulu M S, Sinogeikin S, Hemley R J, Greene R L 2013 Phys. Rev. B 87 024506
[76] Riou G, Richard P, Jandl S, Poirier M, Fournier P, Nekvasil V, Barilo S N, Kurnevich L A 2004 Phys. Rev. B 69 024511
[77] Wang Y L, Huang Y, Shan L, Li S L, Dai P C, Ren C, Wen H H 2009 Physical Review B 80 094513
[78] Long Y W, Kaneko Y, Ishiwata S, Taguchi Y, Tokura Y 2011 J. Phys-condens. Mater. 23 245601
[79] Brinkmann M, Rex T, Bach H, Westerholt K 1995 Phys. Rev. Lett. 74 4927
[80] Kojima K M, Krockenberger Y, Yamauchi I, Miyazaki M, Hiraishi M, Koda A, Kadono R, Kumai R, Yamamoto H, Ikeda A, Naito M 2014 Phys. Rev. B 89 180508
[81] Hord R, Luetkens H, Pascua G, Buckow A, Hofmann K, Krockenberger Y, Kurian J, Maeter H, Klauss H H, Pomjakushin V, Suter A, Albert B, Alff L 2010 Phys. Rev. B 82 180508(R)
[82] Weber C, Haule K, Kotliar G 2010 Nat. Phys. 6 574
[83] Sawa A, Kawasaki M, Takagi H, Tokura Y 2002 Phys. Rev. B 66 014531
[84] Jin K, Bach P, Zhang X H, Grupel U, Zohar E, Diamant I, Dagan Y, Smadici S, Abbamonte P, Greene R L 2011 Phys. Rev. B 83 060511
[85] Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A, Bozovic I 2008 Nature 455 782
Catalog
Metrics
- Abstract views: 8255
- PDF Downloads: 392
- Cited By: 0