Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of Raman spectrum from stand-off detection

Zhang Li Zheng Hai-Yang Wang Ying-Ping Ding Lei Fang Li

Citation:

Characteristics of Raman spectrum from stand-off detection

Zhang Li, Zheng Hai-Yang, Wang Ying-Ping, Ding Lei, Fang Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • For developing a method to detect unknown or hazardous materials beyond safe distances, an experimental standoff detection system with using Raman scattering is established in laboratory. It consists of a pulsed laser with a wavelength of 532 nm as an excitation source, an optical assembly for light collecting and focusing with a 25 mm entrance aperture, a grating monochromator for dispersing scattering light, and a photomultiplier connected to an oscillograph for signal monitoring. The angle between the direction of incident laser beam and that of the scattering light collecting assembly is less than 2°. Raman signal intensities of ammonium nitrate, potassium nitrate and sodium nitrate in solid samples in a distance range from 2 m to 10 m are measured. The results are supposed to be comparable to those obtained in a distance range from 20 m to 100 m if a telescope of 250 mm diameter is used instead to collect Raman scattering light as in a usual standoff detection system. Some characteristics of Raman spectra are investigated, such as the spectrum features, the relationships between the amplitude of the highest Raman peak of ammonium nitrate and the intensity of the excitation light, the detection distance, the concentration of the sample and the normal direction of the sample surface. The Raman spectra of ammonium nitrate, potassium nitrate and sodium nitrate look similar: each of them has a highest peak in the vicinity of 1050 cm-1, small difference can be observed, and it can serve as a "signature" for discriminating between them. The experimental results demonstrate that the intensity of the characteristic Raman spectrum of ammonium nitrate is proportional to the excitation power, with approximate quadratic relationship, and tends to be inversely proportional to the square of the detection distance except that the detection distance is too short to ignore the influence of the focal length of light collecting optics on image size. In addition, the intensity of the characteristic Raman spectrum of ammonium nitrate decays approximately at an exponential rate with the decrease of its concentration. Finally, the intensity of the Raman signal of ammonium nitrate is approximately proportional to the cosine of the angle between the direction of the incident light and the surface normal. This relationship is similar to Lambert's cosine law that the radiant intensity observed from an ideal diffusely reflecting surface is directly proportional to the cosine of the angle. The last two phenomena imply that it may be particularly difficult to detect the substances of interest in a mixture on horizontal ground surface for Raman standoff detection system.
      Corresponding author: Zhang Li, 15056931062@163.com
    [1]

    Pettersson A, Johansson I, Wallin S, Nordberg M, Östmark H 2009 Propellants Explos. Pyrotech 34 297

    [2]

    Farsund Ø, Rustad G, Skogan G 2012 Biomed. Opt. Express 3 2964

    [3]

    Gottfried J L, de Lucia Jr F C, Munson C A, Miziolek A W 2007 Spectroc. Acta Part B: Atom. Spectr. 62 1405

    [4]

    Mukherjee A, Porten S V, Patel C K N 2010 Appl. Opt. 49 2072

    [5]

    Misra A K, Sharma S K, Acosta T E, Porter J N, Lucey P G, Bates D E 2012 Proc. SPIE 8358 835811

    [6]

    Sadate S, Kassu A, Farley C W, Sharma A, Hardisty J, Lifson M T K 2011 Proc. SPIE 8156 81560D

    [7]

    Wallin S, Pettersson A, Önnerud H, Östmark H Nordberg M, Ceco E, Ehlerding A, Johansson I, Käck P 2012 Proc. SPIE 8358 83580P

    [8]

    Angel S M, Gomer N R, Sharma S K, McKay C 2012 Appl. Spectrosc. 66 137

    [9]

    Sharma S K, Misra A K, Acosta T E, Lucey P G, Abedin M N 2010 Proc. SPIE 7691 76910F

    [10]

    Glimtoft M, Bååth P, Saari H, Mäkynen J, Näsilä A, Östmark H 2014 Proc. SPIE 9072 907210

    [11]

    Malka I, Rosenwaks S, Bar I 2014 Appl. Phys. Lett. 104 221103

    [12]

    Emmons E D, Tripathi A, Guicheteau J A, Fountain A W, Christesen S D 2013 J. Phys. Chem. A 117 4158

    [13]

    Laptinskiy K A, Burikov S A, Dolenko T A 2015 Proc. SPIE 9448 94480J

    [14]

    Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese) [房振乾, 胡明, 张伟, 张绪瑞 2008 57 103]

    [15]

    Liu Z J, Han Y X, Yang R, Cheng L 2013 Chinese J. Lasers 40 0615003 (in Chinese) [刘照军, 韩运侠, 杨蕊, 程龙 2013 中国激光 40 0615003]

    [16]

    Ren X Y, Tian Z S, Sun L J, Fu S Y 2014 Acta Phys. Sin. 63 164209 (in Chinese) [任秀云, 田兆硕, 孙兰君, 付石友 2014 63 164209]

    [17]

    Zhou H L, Gu Q T, Zhang Q H, Liu B A, Zhu L L, Zhang L S, Zhang F, Xu X G, Wang Z P, Sun X, Zhao X 2015 Acta Phys. Sin. 64 197801 (in Chinese) [周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显 2015 64 197801]

    [18]

    Liu T, Huang Q, Zhao J H, Kong W J, Liu P, Zhang L, Zhou Y F, Yu X F, Wang L, Wang X L 2015 Chin. Phys. B 24 056102

    [19]

    Pellegrino P M, Holthoff E L, Farrell M E 2015 Laser-Based Optical Detection of Explosives (Boca Raton: Taylor and Francis Group) pp100-102

    [20]

    Mogilevsky G, Borland L, Brickhouse M, Fountain III A W 2012 Int. J. Spectrosc. 2012 808079

    [21]

    Krishna R, Jones A N, Edge R, Marsden B J 2015 Radiat. Phys. Chem. 111 14

    [22]

    Anghelone M, Simbrger D J, Schreiner M 2015 Spectroc. Acta Part A: Molec. Biomolec. Spectr. 149 419

    [23]

    Misra A K, Sharma S K, Chio C H, Lucey P G, Lienert B 2005 Spectroc. Acta Part A: Molec. Biomolec. Spectr. 61 2281

    [24]

    Leonard D A 1967 Nature 216 142

    [25]

    Wikipedia https://en.wikipedia.org/wiki/Standard_error [2015-11-29]

    [26]

    Moros J, Lorenzo J A, Lucena P, Tobaria L M, Laserna J J 2010 Anal. Chem. 82 1389

    [27]

    Wu H B, Chan C K 2008 Atmos. Environ. 42 313

    [28]

    Zangmeister C D, Pemberton J E 2001 J. Phys. Chem. A 105 3788

    [29]

    Tuschel D D, Mikhonin A V, Lemoff B E, Asher S A 2010 Appl. Spectrosc. 64 425

    [30]

    Ren P, Sun L L, Liao J X, Li J Q, Wan X J, Shi X H, Liu X B 2007 Mater. Rev. 21 138 (in Chinese) [任鹏, 孙立来, 廖家欣, 李君求, 万小军, 史向华, 刘小兵 2007 材料导报 21 138]

    [31]

    Aggarwal R L, Farrar L W, Polla D L 2010 22nd International Conference on Raman Spectroscopy Boston, MA, August 8-13, 2010 p164

    [32]

    Justice C O, Wharton S W, Holben B N 1981 Int. J. Remote Sens. 2 213

  • [1]

    Pettersson A, Johansson I, Wallin S, Nordberg M, Östmark H 2009 Propellants Explos. Pyrotech 34 297

    [2]

    Farsund Ø, Rustad G, Skogan G 2012 Biomed. Opt. Express 3 2964

    [3]

    Gottfried J L, de Lucia Jr F C, Munson C A, Miziolek A W 2007 Spectroc. Acta Part B: Atom. Spectr. 62 1405

    [4]

    Mukherjee A, Porten S V, Patel C K N 2010 Appl. Opt. 49 2072

    [5]

    Misra A K, Sharma S K, Acosta T E, Porter J N, Lucey P G, Bates D E 2012 Proc. SPIE 8358 835811

    [6]

    Sadate S, Kassu A, Farley C W, Sharma A, Hardisty J, Lifson M T K 2011 Proc. SPIE 8156 81560D

    [7]

    Wallin S, Pettersson A, Önnerud H, Östmark H Nordberg M, Ceco E, Ehlerding A, Johansson I, Käck P 2012 Proc. SPIE 8358 83580P

    [8]

    Angel S M, Gomer N R, Sharma S K, McKay C 2012 Appl. Spectrosc. 66 137

    [9]

    Sharma S K, Misra A K, Acosta T E, Lucey P G, Abedin M N 2010 Proc. SPIE 7691 76910F

    [10]

    Glimtoft M, Bååth P, Saari H, Mäkynen J, Näsilä A, Östmark H 2014 Proc. SPIE 9072 907210

    [11]

    Malka I, Rosenwaks S, Bar I 2014 Appl. Phys. Lett. 104 221103

    [12]

    Emmons E D, Tripathi A, Guicheteau J A, Fountain A W, Christesen S D 2013 J. Phys. Chem. A 117 4158

    [13]

    Laptinskiy K A, Burikov S A, Dolenko T A 2015 Proc. SPIE 9448 94480J

    [14]

    Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese) [房振乾, 胡明, 张伟, 张绪瑞 2008 57 103]

    [15]

    Liu Z J, Han Y X, Yang R, Cheng L 2013 Chinese J. Lasers 40 0615003 (in Chinese) [刘照军, 韩运侠, 杨蕊, 程龙 2013 中国激光 40 0615003]

    [16]

    Ren X Y, Tian Z S, Sun L J, Fu S Y 2014 Acta Phys. Sin. 63 164209 (in Chinese) [任秀云, 田兆硕, 孙兰君, 付石友 2014 63 164209]

    [17]

    Zhou H L, Gu Q T, Zhang Q H, Liu B A, Zhu L L, Zhang L S, Zhang F, Xu X G, Wang Z P, Sun X, Zhao X 2015 Acta Phys. Sin. 64 197801 (in Chinese) [周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显 2015 64 197801]

    [18]

    Liu T, Huang Q, Zhao J H, Kong W J, Liu P, Zhang L, Zhou Y F, Yu X F, Wang L, Wang X L 2015 Chin. Phys. B 24 056102

    [19]

    Pellegrino P M, Holthoff E L, Farrell M E 2015 Laser-Based Optical Detection of Explosives (Boca Raton: Taylor and Francis Group) pp100-102

    [20]

    Mogilevsky G, Borland L, Brickhouse M, Fountain III A W 2012 Int. J. Spectrosc. 2012 808079

    [21]

    Krishna R, Jones A N, Edge R, Marsden B J 2015 Radiat. Phys. Chem. 111 14

    [22]

    Anghelone M, Simbrger D J, Schreiner M 2015 Spectroc. Acta Part A: Molec. Biomolec. Spectr. 149 419

    [23]

    Misra A K, Sharma S K, Chio C H, Lucey P G, Lienert B 2005 Spectroc. Acta Part A: Molec. Biomolec. Spectr. 61 2281

    [24]

    Leonard D A 1967 Nature 216 142

    [25]

    Wikipedia https://en.wikipedia.org/wiki/Standard_error [2015-11-29]

    [26]

    Moros J, Lorenzo J A, Lucena P, Tobaria L M, Laserna J J 2010 Anal. Chem. 82 1389

    [27]

    Wu H B, Chan C K 2008 Atmos. Environ. 42 313

    [28]

    Zangmeister C D, Pemberton J E 2001 J. Phys. Chem. A 105 3788

    [29]

    Tuschel D D, Mikhonin A V, Lemoff B E, Asher S A 2010 Appl. Spectrosc. 64 425

    [30]

    Ren P, Sun L L, Liao J X, Li J Q, Wan X J, Shi X H, Liu X B 2007 Mater. Rev. 21 138 (in Chinese) [任鹏, 孙立来, 廖家欣, 李君求, 万小军, 史向华, 刘小兵 2007 材料导报 21 138]

    [31]

    Aggarwal R L, Farrar L W, Polla D L 2010 22nd International Conference on Raman Spectroscopy Boston, MA, August 8-13, 2010 p164

    [32]

    Justice C O, Wharton S W, Holben B N 1981 Int. J. Remote Sens. 2 213

  • [1] Zhang Mao-Di, Jiao Chen-Yin, Wen Ting, Li Jing, Pei Sheng-Hai, Wang Zeng-Hui, Xia Juan. In-situ high pressure polarized Raman spectroscopy of rhenium disulfide. Acta Physica Sinica, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [2] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [3] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] Wang Xin, Kang Zhe-Ming, Liu Long, Fan Xian-Guang. Baseline correction algorithm for Raman spectra based on median filtering and un-uniform B-spline. Acta Physica Sinica, 2020, 69(20): 200701. doi: 10.7498/aps.69.20200552
    [5] Li Yan, Zhang Lin-Bin, Li Jiao, Lian Xiao-Xue, Zhu Jun-Wu. Crystallization characteristics of zinc oxide under electric field and Raman spectrum analysis of polarized products. Acta Physica Sinica, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [6] Li Hong-Ming,  Dong Chuang,  Wang Qing,  Li Xiao-Na,  Zhao Ya-Jun,  Zhou Da-Yu. Correlation between electrical resistivity and strength of copper alloy and material classification. Acta Physica Sinica, 2019, 68(1): 016101. doi: 10.7498/aps.68.20181498
    [7] Zhou Hai-Liang, Gu Qing-Tian, Zhang Qing-Hua, Liu Bao-An, Zhu Li-Li, Zhang Li-Song, Zhang Fang, Xu Xin-Guang, Wang Zheng-Ping, Sun Xun, Zhao Xian. Raman spectroscopic study on the micro-structure of NH4H2PO4 and ND4D2PO4 crystals. Acta Physica Sinica, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [8] Xu Si-Wei, Wang Li, Shen Xiang. Raman scattering and X-ray photoelectron spectra of GexSb20Se80-x Glasses. Acta Physica Sinica, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [9] Liang Yuan, Xing Huai-Zhong, Chao Ming-Ju, Liang Er-Jun. Syntheses of negative thermal expansion materials Sc2(MO4)3 (M=W, Mo) with a CO2 laser and their Raman spectra. Acta Physica Sinica, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [10] Li Qiao-Qiao, Han Wen-Peng, Zhao Wei-Jie, Lu Yan, Zhang Xin, Tan Ping-Heng, Feng Zhi-Hong, Li Jia. Raman spectra of monoand bi-layer graphenes with ion-induced defects-and its dispersive frequency on the excitation energy. Acta Physica Sinica, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [11] Chen Yuan-Zheng, Li Shuo, Li Liang, Men Zhi-Wei, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Zhou Mi. Study of phase transition of HoVO4 under high pressure by Raman scattering and ab initio calculations. Acta Physica Sinica, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [12] Wang Li-Hong, You Jing-Lin, Wang Yuan-Yuan, Zheng Shao-Bo, Simon Patrick, Hou Min, Ji Zi-Fang. Temperature dependent Raman spectra and micro-structure study of hexagonal MgTiO3 crystal. Acta Physica Sinica, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [13] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [14] Zang Hang, Wang Zhi-Guang, Pang Li-Long, Wei Kong-Fang, Yao Cun-Feng, Shen Tie-Long, Sun Jian-Rong, Ma Yi-Zhun, Gou Jie, Sheng Yan-Bin, Zhu Ya-Bin. Raman investigation of ion-implanted ZnO films. Acta Physica Sinica, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [15] Zhou Wen-Ping, Wan Song-Ming, Zhang Xia, Zhang Qing-Li, Sun Dun-Lu, Qiu Huai-Li, You Jing-Lin, Yin Shao-Tang. Study of growth units and the growth habit of PbMoO4 crystal using high temperature Raman spectra. Acta Physica Sinica, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [16] Ding Shuo, Liu Yu-Long, G. G. Siu. Raman study of SnO2 nanograins under different annealing temperature. Acta Physica Sinica, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [17] Xu Cun-Ying, Zhang Peng-Xiang, Yan Lei. Blue shift of Raman peaks of coated BaTiO3 nanoparticles. Acta Physica Sinica, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [18] Bai Ying, Lan Yan-Na, Mo Yu-Jun. Temperature measurement from the Raman spectra of porous silicon. Acta Physica Sinica, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [19] Sun Dun-Lu, Qiu Huai-Li, Hang Yin, Zhang Lian-Han, Zhu Shi-Ning, Wang Ai-Hua, Yin Shao-Tang. Study on laser-micro-Raman spectra in near-stoichiometric LiNbO3 crystals. Acta Physica Sinica, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] Ding Pei, Liang Er-Jun, Zhang Hong-Rui, Liu Yi-Zhen, Liu Hui, Guo Xin-Yong, Du Zu-Liang. Growth mechanism and Raman spectroscopic study of “interlinked-cone" shaped CNx nanotubes. Acta Physica Sinica, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
Metrics
  • Abstract views:  7328
  • PDF Downloads:  445
  • Cited By: 0
Publishing process
  • Received Date:  01 November 2015
  • Accepted Date:  15 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回
Baidu
map