Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Screw dislocation slip and its interaction with ½[${{11}}\bar {{1}}$] dislocation loop in bcc-Fe at different temperatures

Wang Jin He Xin-Fu Cao Han Jia Li-Xia Dou Yan-Kun Yang Wen

Citation:

Screw dislocation slip and its interaction with ½[${{11}}\bar {{1}}$] dislocation loop in bcc-Fe at different temperatures

Wang Jin, He Xin-Fu, Cao Han, Jia Li-Xia, Dou Yan-Kun, Yang Wen
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Reduced activation ferritic/martensitic (RAFM) steel, as a typical body centered cubic (bcc) iron based structure material, has become a candidate material for future fusion reactor. Nano-scale prismatic interstitial dislocation loops formed in irradiated RAFM have been studied for many years because of their significant influences on the mechanical properties (e.g. irradiation embrittlement, hardening, creep, etc.). Compared with edge dislocation, screw dislocation has very important influence on plastic deformation behavior because of its low mobility. Thus, the mechanism of interaction between screw dislocation and interstitial dislocation loops has become an intense research topic of interest. In this study, the slip behavior of screw dislocation and the mechanisms of interaction between screw dislocation and ½[$11\bar 1$] dislocation loop in bcc-Fe at different temperatures are investigated by molecular dynamics simulation. The results show that the screw dislocation mainly slides along the ($\bar 2 11$) plane at a low temperature of 2 K under the increase of shear stress. With the temperature increasing to 823 K, it is prone to cross slip, and then the cross slip occurs alternately in the ($\bar 1 10$) plane and the ($\bar 2 11$) plane. Therefore, with the increase of temperature, the critical shear stress decreases gradually. When the screw dislocation slips close to the dislocation loop, the mechanism of interaction between screw dislocation and dislocation loop is different at different temperature: at low temperature of 2 K, there is repulsive force between screw dislocation and dislocation loop, when screw dislocation slip approaches to the dislocation loop, the cross slip of screw dislocation can occur, and shear stress is lower than that from the model without dislocation loop; at medium temperatures of 300 K and 600 K, the influence of repulsive force on the cross slip of screw dislocation can be weakened, and screw dislocation will slip through the dislocation loop then form the new structure named helix turn, which further hinders screw dislocation slipping and results in the increase of shear stress; at a high temperature of 823 K, the screw dislocation is more likely to cross slip due to the thermal activation, and the slip of dislocation loop is also easier to occur, but the screw dislocation and the dislocation loop do not contact each other in the whole shearing process, therefore the shear stress is lowest.
      Corresponding author: Wang Jin, wangjin118114@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1867217) and the National Key Research and Development Program of China (Grant No. 2018YFE0308104)
    [1]

    Ullmaier H 1984 Nucl. Fusion 24 1039Google Scholar

    [2]

    Sokolov M A, Tanigawa H, Odette G R, Shiba K, Klueh R L 2007 J. Nucl. Mater. 367 68Google Scholar

    [3]

    Dai Y, Long B, Tong Z F 2008 J. Nucl. Mater. 377 115Google Scholar

    [4]

    Hardie C D, Williams C A, Xu S, Roberts S G 2013 J. Nucl. Mater. 439 33Google Scholar

    [5]

    Suganuma K, Kayano H 1983 J. Nucl. Mater. 118 234Google Scholar

    [6]

    Terentyev D, Haghighat S M H, Schaublin R 2010 J. Appl. Phys. 107 55Google Scholar

    [7]

    贾丽霞, 贺新福, 豆艳坤, 吴石, 王东杰, 杨文 2017 核动力工程 38 115Google Scholar

    Jia L X, He X F, Dou Y K, Wu S, Wang D J, Yang Wen 2017 Nuclear Power Engineering 38 115Google Scholar

    [8]

    Wang Y X, Xu Q, Yoshiie T, Pan Z Y 2008 J. Nucl. Mater. 376 133Google Scholar

    [9]

    Osetsky Y N, Stoller R E 2015 J. Nucl. Mater. 465 448Google Scholar

    [10]

    Yang L, Zhu Z Q, Peng S M, Long X G, Zhou X S, Zu X T, Heinisch H L, Kurtz R J, Gao F 2013 J. Nucl. Mater. 441 6Google Scholar

    [11]

    Terentyev D, Bergner F, Osetsky Y 2013 Acta Mater. 61 1444Google Scholar

    [12]

    Rong Z, Osetsky Y N, Bacon D J 2005 Philos. Mag. 85 1473Google Scholar

    [13]

    Jia L X, He X F, Dou Y K, Wang D J, Wu S, Cao H, Yang W 2019 Nucl. Instrum. Methods Phys. Res. 456 103Google Scholar

    [14]

    Liu X Y, Biner S B 2008 Scripta Mater. 59 51Google Scholar

    [15]

    Hale L M, Zimmerman J A, Weinberger C R 2014 Comput. Mater. Sci. 90 106Google Scholar

    [16]

    Yang L, Gao F, Kurtz R J, Zu X T 2015 Acta Mater. 82 275Google Scholar

    [17]

    Zhang L, Fu C C, Hayward E, Lu G H 2015 J. Nucl. Mater. 459 247Google Scholar

    [18]

    Martinez E, Schwen D, Caro A 2015 Acta Mater. 84 208Google Scholar

    [19]

    Zhurkin E E, Terentyev D, Hou M, Malerba L, Bonny G 2011 J. Nucl. Mater. 417 1082Google Scholar

    [20]

    Wakai E, Hishinuma A, Kato Y, Yano H, Takaki S, Abiko K 1995 J. Phys. IV France 5 C7-277Google Scholar

    [21]

    Xu H X, Stoller R E, Osetsky Y N, Terentyev D 2013 Phys. Rev. Lett. 110 265503Google Scholar

    [22]

    Terentyev D, Bacon D J, Osetsky Y N 2010 Philos. Mag. 90 1019Google Scholar

    [23]

    Pascale E T, Shehadeh M A 2018 Int. J. Plasticity 9 2Google Scholar

    [24]

    Song G, Lee S W 2019 Comput. Mater. Sci. 168 172Google Scholar

    [25]

    Xia Z Y, Zhang Z J, Yan J X, Yang J B, Zhang Z F 2020 Comput. Mater. Sci. 174 109503Google Scholar

    [26]

    LAMMPS Molecular Dynamics Simulator http://lammps. sandia.gov/ [2020-10-7]

    [27]

    Caro A, Hetherly J, Stukowski A, Caro M, Martinez E, Srivilliputhur S, Zepeda-Ruiz L, Nastasi M 2011 J. Nucl. Mater. 418 261Google Scholar

    [28]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [29]

    Gordon P A, Neeraj T, Li Y, Li J 2010 Modell. Simul. Mater. Sci. Eng. 18 085008Google Scholar

    [30]

    Jaime M, Wei C, Vasily V B 2004 Nature Mater. 3 158Google Scholar

    [31]

    Bacon D J, Osetsky Y N, Rong Z 2006 Philos. Mag. 86 3921Google Scholar

  • 图 1  (a)螺位错模型和(b)含½[$11\bar 1$]位错环的螺位错模型

    Figure 1.  (a) Model of screw dislocation; (b) model of screw dislocation with ½[$11\bar 1 $] dislocation loop.

    图 2  不同温度下螺位错及其与½[$11\bar 1$]位错环模型切应力-应变曲线

    Figure 2.  Shear stress-strain (τ-ε) curves of screw dislocation model with and without ½[$11\bar 1$] loop under different temperatures.

    图 3  随应变量增加的螺位错模型构型图 (a) ε = 0; (b) ε = 0.03; (c) ε = 0.048; (d) ε = 0.058; (e) ε = 0.068; (f) ε = 0.075

    Figure 3.  Configurations of screw dislocation model with increasing strain: (a) ε = 0; (b) ε = 0.03; (c) ε = 0.048; (d) ε = 0.058; (e) ε = 0.068; (f) ε = 0.075.

    图 4  不同温度下螺位错模型在ε = 0.03 (a), (b), (c)和0.045 (d), (e), (f)时的构型图 (a), (d) 300 K; (b), (e) 600 K; (c), (f) 823 K

    Figure 4.  Configurations of screw dislocation model when ε = 0.03 (a), (b), (c) and 0.045 (d), (e), (f) under different temperatures: (a), (d) 300 K; (b), (e) 600 K; (c), (f) 823 K.

    图 5  2 K下随应变量增加含位错环的螺位错模型构型图 (a) ε = 0.015; (b) ε = 0.03; (c) ε = 0.06

    Figure 5.  Configurations of screw dislocation model with dislocation loop with increasing strain at 2 K: (a) ε = 0.015; (b) ε = 0.03; (c) ε = 0.06.

    图 6  不同温度下含位错环的螺位错模型在 ε = 0.015 (a), (d), 0.03 (b), (e)和0.045 (c), (f)时构型图 (a), (b), (c) 300 K; (d), (e), (f) 600 K

    Figure 6.  Configurations of screw dislocation model with dislocation loop when ε = 0.015 (a), (d), 0.03 (b), (e), and 0.045 (c), (f) under different temperatures: (a), (b), (c) 300 K; (d), (e), (f) 600 K.

    图 7  823 K下随应变量增加含位错环的螺位错模型构型图 (a) ε = 0.015; (b) ε = 0.03; (c) ε = 0.045

    Figure 7.  Configurations of screw dislocation model with dislocation loop with increasing strain at 823 K: (a) ε = 0.015; (b) ε = 0.03; (c) ε = 0.045.

    Baidu
  • [1]

    Ullmaier H 1984 Nucl. Fusion 24 1039Google Scholar

    [2]

    Sokolov M A, Tanigawa H, Odette G R, Shiba K, Klueh R L 2007 J. Nucl. Mater. 367 68Google Scholar

    [3]

    Dai Y, Long B, Tong Z F 2008 J. Nucl. Mater. 377 115Google Scholar

    [4]

    Hardie C D, Williams C A, Xu S, Roberts S G 2013 J. Nucl. Mater. 439 33Google Scholar

    [5]

    Suganuma K, Kayano H 1983 J. Nucl. Mater. 118 234Google Scholar

    [6]

    Terentyev D, Haghighat S M H, Schaublin R 2010 J. Appl. Phys. 107 55Google Scholar

    [7]

    贾丽霞, 贺新福, 豆艳坤, 吴石, 王东杰, 杨文 2017 核动力工程 38 115Google Scholar

    Jia L X, He X F, Dou Y K, Wu S, Wang D J, Yang Wen 2017 Nuclear Power Engineering 38 115Google Scholar

    [8]

    Wang Y X, Xu Q, Yoshiie T, Pan Z Y 2008 J. Nucl. Mater. 376 133Google Scholar

    [9]

    Osetsky Y N, Stoller R E 2015 J. Nucl. Mater. 465 448Google Scholar

    [10]

    Yang L, Zhu Z Q, Peng S M, Long X G, Zhou X S, Zu X T, Heinisch H L, Kurtz R J, Gao F 2013 J. Nucl. Mater. 441 6Google Scholar

    [11]

    Terentyev D, Bergner F, Osetsky Y 2013 Acta Mater. 61 1444Google Scholar

    [12]

    Rong Z, Osetsky Y N, Bacon D J 2005 Philos. Mag. 85 1473Google Scholar

    [13]

    Jia L X, He X F, Dou Y K, Wang D J, Wu S, Cao H, Yang W 2019 Nucl. Instrum. Methods Phys. Res. 456 103Google Scholar

    [14]

    Liu X Y, Biner S B 2008 Scripta Mater. 59 51Google Scholar

    [15]

    Hale L M, Zimmerman J A, Weinberger C R 2014 Comput. Mater. Sci. 90 106Google Scholar

    [16]

    Yang L, Gao F, Kurtz R J, Zu X T 2015 Acta Mater. 82 275Google Scholar

    [17]

    Zhang L, Fu C C, Hayward E, Lu G H 2015 J. Nucl. Mater. 459 247Google Scholar

    [18]

    Martinez E, Schwen D, Caro A 2015 Acta Mater. 84 208Google Scholar

    [19]

    Zhurkin E E, Terentyev D, Hou M, Malerba L, Bonny G 2011 J. Nucl. Mater. 417 1082Google Scholar

    [20]

    Wakai E, Hishinuma A, Kato Y, Yano H, Takaki S, Abiko K 1995 J. Phys. IV France 5 C7-277Google Scholar

    [21]

    Xu H X, Stoller R E, Osetsky Y N, Terentyev D 2013 Phys. Rev. Lett. 110 265503Google Scholar

    [22]

    Terentyev D, Bacon D J, Osetsky Y N 2010 Philos. Mag. 90 1019Google Scholar

    [23]

    Pascale E T, Shehadeh M A 2018 Int. J. Plasticity 9 2Google Scholar

    [24]

    Song G, Lee S W 2019 Comput. Mater. Sci. 168 172Google Scholar

    [25]

    Xia Z Y, Zhang Z J, Yan J X, Yang J B, Zhang Z F 2020 Comput. Mater. Sci. 174 109503Google Scholar

    [26]

    LAMMPS Molecular Dynamics Simulator http://lammps. sandia.gov/ [2020-10-7]

    [27]

    Caro A, Hetherly J, Stukowski A, Caro M, Martinez E, Srivilliputhur S, Zepeda-Ruiz L, Nastasi M 2011 J. Nucl. Mater. 418 261Google Scholar

    [28]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [29]

    Gordon P A, Neeraj T, Li Y, Li J 2010 Modell. Simul. Mater. Sci. Eng. 18 085008Google Scholar

    [30]

    Jaime M, Wei C, Vasily V B 2004 Nature Mater. 3 158Google Scholar

    [31]

    Bacon D J, Osetsky Y N, Rong Z 2006 Philos. Mag. 86 3921Google Scholar

Metrics
  • Abstract views:  8110
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  08 October 2020
  • Accepted Date:  09 November 2020
  • Available Online:  08 March 2021
  • Published Online:  20 March 2021

/

返回文章
返回
Baidu
map