搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纯V和TiVTa合金中刃位错运动及其与位错环之间相互作用的模拟研究

汪淑敏 贺新福 豆艳坤

引用本文:
Citation:

纯V和TiVTa合金中刃位错运动及其与位错环之间相互作用的模拟研究

汪淑敏, 贺新福, 豆艳坤

Simulation study on edge dislocation motion and its interaction with dislocation loop in pure V and TiVTa alloy

WANG Shumin, HE Xinfu, DOU Yankun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用分子动力学对纯V和TiVTa等比合金中的刃位错运动以及刃位错与位错环之间的相互作用开展模拟研究. 结果表明, 纯V中控制刃位错运动的是声子阻力机制; 而在TiVTa合金中, 由于存在显著的晶格畸变和局部化学波动, 声子阻力机制和纳米段脱陷机制同时控制刃位错运动. 在纯V和TiVTa合金中加入不同尺寸的间隙$ \left\langle {100} \right\rangle $环和$ \left\langle {111} \right\rangle $环, 发现位错与环之间存在两种相互作用机制: 对于小尺寸位错环, 位错倾向于吸收位错环后继续运动; 对于大尺寸位错环, 位错倾向于切过位错环后继续运动. 位错环对位错的阻碍作用随着位错环尺寸的增加而增加、随着温度的升高而降低. $ \left\langle {111} \right\rangle $环由于极强的移动性, 对位错运动产生的阻碍作用低于$ \left\langle {100} \right\rangle $环, 而这种差异在TiVTa合金中降低, 因为TiVTa合金中显著的晶格畸变降低了$ \left\langle {111} \right\rangle $环的移动性.
    The motion of edge dislocations and the interaction between edge dislocations and dislocation loops in pure V and TiVTa alloy are simulated in this work, with the aim to reveal the influences of the existence of $ \left\langle {111} \right\rangle $ dislocation loops, which are dominant in pure V, and $ \left\langle {100} \right\rangle $ dislocation loops, which are dominant in TiVTa alloy, on the irradiation properties of materials and the differences between the irradiation properties influenced by the two types of dislocation loops. The edge dislocations and $ \left\langle {100} \right\rangle $ loops and $ \left\langle {111} \right\rangle $ loops with different sizes are introduced into pure V and TiVTa alloy by using molecular dynamics simulation technology. The effects of loop type, loop size, and temperature on the interaction between edge dislocations and dislocation loops in pure V and TiVTa alloy are compared with each other and analyzed. The differences in interaction between dislocations and dislocation loops are summarized, and the reasons are revealed.The simulation results of edge dislocation motion reveal that the velocity of edge dislocations in the pure V decreases with temperature increasing, while the velocity of edge dislocations in the TiVTa alloy shows no significant relation to temperature. This is due to phonon resistance mechanism controlling the motion of edge dislocations in the pure V. In the TiVTa alloy, due to inevitable local chemical fluctuations, the phonon resistance mechanism and the nanoscale segment detrapping mechanism simultaneously control the motion of edge dislocations.The simulation results of the interaction between edge dislocations and dislocation loops show that there are two kinds of interaction mechanisms between dislocations and loops in pure V alloy and TiVTa alloy: for small dislocation loops, dislocations tend to absorb the loops and continue to move; for large dislocation loops, dislocations tend to go through the loops and then move forward. With the size of dislocation loop increasing, the stress required for dislocations to detach from the dislocation loops also increases. With the increase of temperature, the stress required for dislocations to detach from the dislocation loops decreases. This is because the larger the size of the loops, the larger the contact area between dislocations and loops is and the greater the obstacle presented by the loops. With the increase in temperature, atomic vibrations are accelerated, and the hindrance of the loops is reduced.When comparing the interaction between $ \left\langle {100} \right\rangle $ loops and $ \left\langle {111} \right\rangle $ loops and dislocations, it is found that the hindrance of $ \left\langle {111} \right\rangle $ loops to dislocation movement is lower than that of $ \left\langle {100} \right\rangle $ loops, and the difference in the hindrance to dislocation between $ \left\langle {100} \right\rangle $ loops and $ \left\langle {111} \right\rangle $ loops is more significant in pure V than what is observed in TiVTa alloy. This is because the mobility of $ \left\langle {111} \right\rangle $ loops is higher than that of $ \left\langle {100} \right\rangle $ loops, the hindrance to dislocation motion of $ \left\langle {111} \right\rangle $ loops is lower than that of $ \left\langle {100} \right\rangle $ loops. However, in the TiVTa alloy, significant lattice distortion reduces the mobility of $ \left\langle {111} \right\rangle $ loops. Therefore, the hindrance of $ \left\langle {111} \right\rangle $ loops in the TiVTa alloy is lower than that of $ \left\langle {100} \right\rangle $ loops, but the difference between them is reduced compared with what is observed in the pure V.
  • 图 1  位错与位错环相互作用模型示意图

    Fig. 1.  Simulation model of the interaction between dislocation and dislocation loop.

    图 2  刃位错运动的时间位移曲线 (a)纯V; (b) TiVTa合金

    Fig. 2.  Time-displacement curves of edge dislocation: (a) Pure V; (b) TiVTa alloy.

    图 3  位错运动速度随温度和应力的变化 (a)纯V; (b) TiVTa合金

    Fig. 3.  Dislocation velocity with temperature and stress: (a) Pure V; (b) TiVTa alloy.

    图 4  纯V和TiVTa合金中的刃位错线

    Fig. 4.  Edge dislocation lines in pure V and TiVTa alloy.

    图 5  纯V中位错与间隙数为60的$ \left\langle {100} \right\rangle $环在150 MPa下相互作用的可视化图像 (a) t = 0 ps; (b) t = 20 ps; (c) t = 24 ps; (d) t = 28 ps; (e) t = 36 ps

    Fig. 5.  Interaction between dislocation and $ \left\langle {100} \right\rangle $ loop with 60 SIAs at 150 MPa in pure V: (a) t = 0 ps; (b) t = 20 ps; (c) t = 24 ps; (d) t = 28 ps; (e) t = 36 ps.

    图 6  纯V中位错与间隙数为144的$ \left\langle {100} \right\rangle $环的相互作用 (a) t = 0 ps; (b) t = 22 ps; (c) t = 160 ps

    Fig. 6.  Interaction between dislocation and $ \left\langle {100} \right\rangle $ loop with 144 SIAs in pure V: (a) t = 0 ps; (b) t = 22 ps; (c) t = 160 ps.

    图 7  纯V中位错与间隙数为64的$ \left\langle {111} \right\rangle $环的相互作用 (a) t = 16 ps; (b) t = 20 ps; (c) t = 24 ps

    Fig. 7.  Interaction between dislocation and $ \left\langle {111} \right\rangle $ loop with 64 SIAs in pure V: (a) t = 16 ps; (b) t = 20 ps; (c) t = 24 ps.

    图 8  纯V中位错与间隙数为144的$ \left\langle {111} \right\rangle $环的相互作用 (a) t = 0 ps; (b) t = 20 ps; (c) t = 22 ps; (d) t = 76 ps; (e) t = 118 ps; (f) t = 124 ps

    Fig. 8.  Interaction between dislocation and $ \left\langle {111} \right\rangle $ loop with 144 SIAs in pure V: (a) t = 0 ps; (b) t = 20 ps; (c) t = 22 ps; (d) t = 76 ps; (e) t = 118 ps; (f) t = 124 ps.

    图 9  TiVTa合金中刃位错与$ \left\langle {111} \right\rangle $环的可视化图像

    Fig. 9.  Edge dislocation and $ \left\langle {111} \right\rangle $ loop in TiVTa alloy.

    图 10  TiVTa合金中位错与间隙数为60的$ \left\langle {100} \right\rangle $环的相互作用 (a) t = 0 ps; (b) t = 132 ps; (c) t = 144 ps

    Fig. 10.  Interaction between dislocation and $ \left\langle {100} \right\rangle $ loop with 60 SIAs in TiVTa alloy: (a) t = 0 ps; (b) t = 132 ps; (c) t = 144 ps.

    图 11  TiVTa合金中位错与间隙数为64的$ \left\langle {111} \right\rangle $环的相互作用 (a) t = 0 ps; (b) t = 160 ps; (c) t = 212 ps

    Fig. 11.  Interaction between dislocation and $ \left\langle {111} \right\rangle $ loop with 64 SIAs in TiVTa alloy: (a) t = 0 ps; (b) t = 160 ps; (c) t = 212 ps.

    图 12  550 MPa下TiVTa合金中位错与间隙数为400的$ \left\langle {111} \right\rangle $环的相互作用 (a) t = 0 ps; (b) t = 32 ps; (c) t = 36 ps; (d) t = 52 ps; (e) t = 60 ps

    Fig. 12.  Interaction between dislocation and $ \left\langle {111} \right\rangle $ loop with 400 SIAs in TiVTa alloy at 550 MPa: (a) t = 0 ps; (b) t = 32 ps; (c) t = 36 ps; (d) t = 52 ps; (e) t = 60 ps.

    图 13  550 MPa下TiVTa合金中位错与间隙数为416的$ \left\langle {100} \right\rangle $环的相互作用 (a) t = 0 ps; (b) t = 28 ps; (c) t = 60 ps; (d) t = 68 ps

    Fig. 13.  Interaction between dislocation and $ \left\langle {100} \right\rangle $ loop with 416 SIAs in TiVTa alloy at 550 MPa: (a) t = 0 ps; (b) t = 28 ps; (c) t = 60 ps; (d) t = 68 ps.

    图 14  700 K下纯V中位错与间隙数为144的$ \left\langle {100} \right\rangle $环的相互作用 (a) t = 0 ps; (b) t = 24 ps; (c) t = 28 ps; (d) t = 40 ps; (e) t = 48 ps

    Fig. 14.  Interaction between dislocation and $ \left\langle {100} \right\rangle $ loop with 144 SIAs at 700 K in pure V: (a) t = 0 ps; (b) t = 24 ps; (c) t = 28 ps; (d) t = 40 ps; (e) t = 48 ps.

    Baidu
  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Senkov O N, Wilks G B, Scott J M, Miracle D B 2011 Intermetallics 19 698Google Scholar

    [3]

    Couzinié J P, Dirras G 2019 Mater. Charact. 147 533Google Scholar

    [4]

    Fu A, Guo W M, Liu B, Cao Y K, Xu L Y, Fang Q H, Yang H, Liu Y 2020 J. Alloys Compd. 815 152466Google Scholar

    [5]

    Yang C, Aoyagi K, Bian H K, Chiba A 2019 Mater. Lett. 254 46Google Scholar

    [6]

    Sadeghilaridjani M, Ayyagari A, Muskeri S, Hasannaeimi V, Salloom R, Chen W Y, Mukherjee S 2020 J. Nucl. Mater. 529 151955Google Scholar

    [7]

    Kareer A, Waite J C, Li B, Couet A, Armstrong D E J, Wilkinson A J 2019 J. Nucl. Mater. 526 151744Google Scholar

    [8]

    El-Atwani O, Alvarado A, Unal K, Fensin S, Hinks J A, Greaves G, Baldwin J K S, Maloy S A, Martinez E 2021 Mater. Today Energy 19 100599Google Scholar

    [9]

    Lu Y P, Huang H F, Gao X Z, Ren C L, Gao J, Zhang H Z, Zheng S J, Jin Q Q, Zhao Y H, Lu C Y, Wang T M, Li T J 2019 J. Mater. Sci. Technol. 35 369Google Scholar

    [10]

    Mei L, Zhang Q, Dou Y, Fu E G, Li L, Chen S, Dong Y, Guo X, He X, Yang W, Xue Y, Jin K 2023 Scr. Mater. 223 115070Google Scholar

    [11]

    George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [12]

    Chen B, Li S Z, Zong H X, Ding X D, Sun J, Ma E 2020 Proc. Natl. Acad. Sci. U. S. A. 117 16199Google Scholar

    [13]

    Lee C, Maresca F, Feng R, Chou Y, Ungar T, Widom M, An K, Poplawsky J D, Chou Y C, Liaw P K, Curtin W A 2021 Nat. Commun. 12 5474Google Scholar

    [14]

    Yin X, Dou Y K, He X F, Jin K, Wang C L, Dong Y G, Wang C Y, Xue Y F, Yang W 2023 Acta Metall. Sin. (Engl. Lett. ) 36 405Google Scholar

    [15]

    Bacon D J, Osetsky Y N, Rong Z 2006 Philos. Mag. 86 3921Google Scholar

    [16]

    Marian J, Wirth B D, Schäublin R, Odette G R, Perlado J M 2003 J. Nucl. Mater. 323 181Google Scholar

    [17]

    Marian J, Wirth B D, Schäublin R, Odette G R, Perlado J M 2005 Philos. Mag. 85 1473Google Scholar

    [18]

    Nomoto A, Soneda N, Takahashi A, Ishino S 2005 Mater. Trans. 46 463Google Scholar

    [19]

    林盼栋, 聂君锋, 刘美丹 2022 清华大学学报 (自然科学版) 62 2029

    Lin P D, Nie J F, Liu M D 2022 J. Tsinghua Univ. (Sci. Technol. ) 62 2029

    [20]

    王瑾, 贺新福, 曹晗, 王东杰, 豆艳坤, 杨文 2021 原子能科学技术 55 1210Google Scholar

    Wang J, He X F, Cao H, Wang D J, Dou Y K, Yang W 2021 At. Energy Sci. Technol. 55 1210Google Scholar

    [21]

    王瑾, 贺新福, 曹晗, 贾丽霞, 豆艳坤, 杨文 2021 70 068701Google Scholar

    Wang J, He X F, Cao H, Jia L X, Dou Y K, Yang W 2021 Acta Phys. Sin. 70 068701Google Scholar

    [22]

    Yu M S, Wang Z Q, Wang F, Setyawan W, Long X H, Liu Y, Dong L M, Gao N, Gao F, Wang X L 2023 Acta Mater. 245 118651Google Scholar

    [23]

    Li J, Chen H T, Fang Q H, Jiang C, Liu Y, Liaw P K 2020 Int. J. Plast. 133 102819Google Scholar

    [24]

    Dou Y K, Cao H, He X F, Gao J, Cao J L, Yang W 2021 J. Alloys Compd. 857 157556Google Scholar

    [25]

    Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in 't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 108171Google Scholar

    [26]

    Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251Google Scholar

    [27]

    Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012

    [28]

    Qiu R Y, Chen Y C, Liao X C, He X F, Yang W, Hu W Y, Deng H Q 2021 J. Nucl. Mater. 557 153231Google Scholar

    [29]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2023 Scr. Mater. 222 115048Google Scholar

    [30]

    Ma E 2020 Scr. Mater. 181 127Google Scholar

    [31]

    Wang F L, Balbus G H, Xu S Z, Su Y Q, Shin J, Rottmann P F, Knipling K E, Stinville J C, Mills L H, Senkov O N, Beyerlein I J, Pollock T M, Gianola D S 2020 Science 370 95Google Scholar

    [32]

    Kubilay R E, Ghafarollahi A, Maresca F, Curtin W A 2021 npj Comput. Mater. 7 112Google Scholar

    [33]

    Bu Y Q, Wu Y, Lei Z F, Yuan X Y, Wu H H, Feng X B, Liu J B, Ding J, Lu Y, Wang H T, Lu Z P, Yang W 2021 Mater. Today 46 28Google Scholar

  • [1] 赵永鹏, 豆艳坤, 贺新福, 杨文. Ti-V-Ta多主元合金辐照位错环形成的级联重叠模拟.  , doi: 10.7498/aps.73.20241074
    [2] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究.  , doi: 10.7498/aps.72.20221621
    [3] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究.  , doi: 10.7498/aps.72.20221332
    [4] 徐驰, 万发荣. 聚变材料钨辐照后退火形成的位错环特性及inside-outside衬度分析.  , doi: 10.7498/aps.72.20222124
    [5] 秦梦飞, 王英敏, 张红玉, 孙继忠. 〈100〉间隙型位错环在纯钨及含氦杂质钨(010)表面下运动行为的分子动力学模拟.  , doi: 10.7498/aps.72.20230651
    [6] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究.  , doi: 10.7498/aps.71.20221621
    [7] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察.  , doi: 10.7498/aps.71.20211229
    [8] 周明锦, 侯氢, 潘荣剑, 吴璐, 付宝勤. 锆铌合金的特殊准随机结构模型的分子动力学研究.  , doi: 10.7498/aps.70.20201407
    [9] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察.  , doi: 10.7498/aps.70.20211229
    [10] 王瑾, 贺新福, 曹晗, 贾丽霞, 豆艳坤, 杨文. 不同温度下bcc-Fe中螺位错滑移及其与½[${{11}}\bar {{1}}$]位错环相互作用行为.  , doi: 10.7498/aps.70.20201659
    [11] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究.  , doi: 10.7498/aps.69.20191425
    [12] 梁晋洁, 高宁, 李玉红. 表面效应对铁${\left\langle 100 \right\rangle} $间隙型位错环的影响.  , doi: 10.7498/aps.69.20191379
    [13] 梁晋洁, 高宁, 李玉红. 体心立方Fe中${ \langle 100 \rangle}$位错环对微裂纹扩展影响的分子动力学研究.  , doi: 10.7498/aps.69.20200317
    [14] 崔丽娟, 高进, 杜玉峰, 张高伟, 张磊, 龙毅, 杨善武, 詹倩, 万发荣. 氢离子辐照纯钒中形成的位错环.  , doi: 10.7498/aps.65.066102
    [15] 吴文平, 郭雅芳, 汪越胜, 徐爽. 镍基单晶高温合金界面位错网在剪切载荷作用下的演化.  , doi: 10.7498/aps.60.056802
    [16] 朱弢, 王崇愚, 干勇. 镍基单晶高温合金相界面错配位错网络的演化.  , doi: 10.7498/aps.58.156
    [17] 卢果, 方步青, 张广财, 许爱国. 有限温度下位错环的脱体现象.  , doi: 10.7498/aps.58.7934
    [18] 周耐根, 周 浪. 采用纳米晶柱阵列衬底抑制失配位错形成的分子动力学模拟研究.  , doi: 10.7498/aps.57.3064
    [19] 张 超, 王永亮, 颜 超, 张庆瑜. 替位杂质对低能Pt原子与Pt(111)表面相互作用影响的分子动力学模拟.  , doi: 10.7498/aps.55.2882
    [20] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究.  , doi: 10.7498/aps.54.3278
计量
  • 文章访问数:  247
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-23
  • 修回日期:  2025-01-16
  • 上网日期:  2025-02-17

/

返回文章
返回
Baidu
map