-
本文利用分子动力学对纯V和TiVTa等比合金中的刃位错运动以及刃位错与位错环之间的相互作用开展模拟研究。结果表明,纯V中控制刃位错运动的是声子阻力机制;而在TiVTa合金中,由于存在显著的晶格畸变和局部化学波动,声子阻力机制和纳米段脱陷机制同时控制刃位错运动。在纯V和TiVTa合金中加入不同尺寸的间隙<100>环和<111>环,发现位错与环之间存在两种相互作用机制:对于小尺寸位错环,位错倾向于吸收位错环后继续运动;对于大尺寸位错环,位错倾向于切过位错环后继续运动。位错环对位错的阻碍作用随着位错环尺寸的增加而增加、随着温度的升高而降低。<111>环由于极强的移动性,对位错运动产生的阻碍作用低于<100>环,而这种差异在TiVTa合金中降低,因为TiVTa合金中显著的晶格畸变降低了<111>环的移动性。In this paper, the motion of edge dislocations and the interaction between edge dislocations and dislocation loops in pure V and TiVTa alloy were simulated. The aim was to reveal the influence of the existence of <111> dislocation loops, which are dominant in pure V, and <100> dislocation loops, which are dominant in TiVTa alloy, on the irradiation properties of materials and the differences between the irradiation properties influenced by the two types of dislocation loops. Edge dislocations and <100> loops and <111> loops with different sizes were introduced into pure V and TiVTa alloy using molecular dynamics simulation technology. The effects of loop type, loop size, and temperature on the interaction between edge dislocations and dislocation loops in pure V and TiVTa alloy were compared and analyzed. The differences in the interaction between dislocations and dislocation loops were summarized, and the reasons were revealed.
The simulation results of edge dislocation motion revealed that the velocity of edge dislocations in pure V decreases with increasing temperature, while the velocity of edge dislocations in TiVTa alloy showed no obvious correlation with temperature. This is because in pure V, the motion of edge dislocations is controlled by the phonon resistance mechanism. In TiVTa alloy, due to inevitable local chemical fluctuations, the phonon resistance mechanism and the nanoscale segment detrapping mechanism simultaneously control the motion of edge dislocations.
The simulation results of the interaction between edge dislocations and dislocation loops showed that there are two kinds of interaction mechanisms between dislocations and loops in pure V and TiVTa alloy: for small dislocation loops, dislocations tend to absorb the loops and continue to move; for large dislocation loops, dislocations tend to cut through the loops and then move forward. With the increase in the size of dislocation loops, the stress required for dislocations to break away from the dislocation loops also increases. With the increase in temperature, the stress required for dislocations to break away from the dislocation loops decreases. This is because the larger the size of the loops, the larger the contact area between dislocations and loops, and the greater the obstacle presented by the loops. With the increase in temperature, atomic vibrations are accelerated, and the hindrance of the loops is reduced.
When comparing the interaction between <100> loops and <111> loops and dislocations, it is found that the hindrance of <111> loops to dislocation movement is lower than that of <100> loops, and the difference in the hindrance of <100> loops and <111> loops to dislocations is more obvious in pure V than in TiVTa alloy. This is because the mobility of <111> loops is higher than that of <100> loops, so the hindrance of <111> loops to dislocation motion is lower than that of <100> loops. However, in TiVTa alloy, significant lattice distortion reduces the mobility of <111> loops. Therefore, compared with pure V, in TiVTa alloy, although the hindrance of <111> loops is lower than that of <100> loops, the difference between them is reduced.-
Keywords:
- Molecular dynamics /
- TiVTa alloy /
- Edge dislocation /
- Dislocation loop
-
[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299.
[2] Senkov O N, Wilks G B, Scott J M, Miracle D B 2011 Intermetallics 19 698.
[3] Couzinié J P, Dirras G 2019 Mater. Charact. 147 533.
[4] Fu A, Guo W M, Liu B, Cao Y K, Xu L Y, Fang Q H, Yang H, Liu Y 2020 J. Alloys Compd. 815 152466.
[5] Yang C, Aoyagi K, Bian H K, Chiba A 2019 Mater. Lett. 254 46.
[6] Sadeghilaridjani M, Ayyagari A, Muskeri S, Hasannaeimi V, Salloom R, Chen W Y, Mukherjee S 2020 J. Nucl. Mater. 529 151955.
[7] Kareer A, Waite J C, Li B, Couet A, Armstrong D E J, Wilkinson A J 2019 J. Nucl. Mater. 526 151744.
[8] El-Atwani O, Alvarado A, Unal K, Fensin S, Hinks J A, Greaves G, Baldwin J K S, Maloy S A, Martinez E 2021 Mater. Today Energy 19 100599.
[9] Lu Y P, Huang H F, Gao X Z, Ren C L, Gao J, Zhang H Z, Zheng S J, Jin Q Q, Zhao Y H, Lu C Y, Wang T M, Li T J 2019 J. Mater. Sci. Technol. 35 369.
[10] Mei L, Zhang Q, Dou Y, Fu E G, Li L, Chen S, Dong Y, Guo X, He X, Yang W, Xue Y, Jin K 2023 Scripta Mater. 223 115070.
[11] George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515.
[12] Chen B, Li S Z, Zong H X, Ding X D, Sun J, Ma E 2020 Proc. Natl. Acad. Sci. U.S.A. 117 16199.
[13] Lee C, Maresca F, Feng R, Chou Y, Ungar T, Widom M, An K, Poplawsky J D, Chou Y C, Liaw P K, Curtin W A 2021 Nat. Commun. 12 5474.
[14] Yin X, Dou Y K, He X F, Jin K, Wang C L, Dong Y G, Wang C Y, Xue Y F, Yang W 2023 Acta Metall. Sin. (Engl. Lett.) 36 405.
[15] Bacon D J, Osetsky Y N, Rong Z 2006 Philos. Mag. 86 3921.
[16] Marian J, Wirth B D, Schäublin R, Odette G R, Perlado J M 2003 J. Nucl. Mater. 323 181.
[17] Marian J, Wirth B D, Schäublin R, Odette G R, Perlado J M 2005 Philos. Mag. 85 1473.
[18] Nomoto A, Soneda N, Takahashi A, Ishino S 2005 Mater. Trans. 46 463.
[19] Lin P D, Nie J F, Liu M D 2022 J. Tsinghua Univ. (Sci. Technol.) 62 2029 (in Chinese) [林盼栋,聂君锋,刘美丹 2022 清华大学学报:自然科学版,62 2029]
[20] Wang J, He X F, Cao H, Wang D J, Dou Y K, Yang W 2021 Atomic Energy Sci. Technol. 55 1210 (in Chinese) [王瑾,贺新福,曹晗,王东杰,豆艳坤,杨文 2021 原子能科学技术,55 1210].
[21] Wang J, He X F, Cao H, Jia L X, Dou Y K, Yang W 2021 Acta Phys. Sin. 70 068701 (in Chinese) [王瑾,贺新福,曹晗,贾丽霞,豆艳坤,杨文 2021 ,70 068701].
[22] Yu M S, Wang Z Q, Wang F, Setyawan W, Long X H, Liu Y, Dong L M, Gao N, Gao F, Wang X L 2023 Acta Mater. 245 118651.
[23] Li J, Chen H T, Fang Q H, Jiang C, Liu Y, Liaw P K 2020 Int. J. Plast. 133 102819.
[24] Dou Y K, Cao H, He X F, Gao J, Cao J L, Yang W 2021 J. Alloys Compd. 857 157556.
[25] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 108171.
[26] Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251.
[27] Stukowski A 2009 Modelling Simul. Mater. Sci. Eng. 18 015012.
[28] Qiu R Y, Chen Y C, Liao X C, He X F, Yang W, Hu W Y, Deng H Q 2021 J. Nucl. Mater. 557 153231.
[29] Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2023 Scripta Mater. 222 115048.
[30] Ma E 2020 Scripta Mater. 181 127.
[31] Wang F L, Balbus G H, Xu S Z, Su Y Q, Shin J, Rottmann P F, Knipling K E, Stinville J C, Mills L H, Senkov O N, Beyerlein I J, Pollock T M, Gianola D S 2020 Science 370 95.
[32] Kubilay R E, Ghafarollahi A, Maresca F, Curtin W A 2021 npj Comput. Mater. 7 112.
[33] Bu Y Q, Wu Y, Lei Z F, Yuan X Y, Wu H H, Feng X B, Liu J B, Ding J, Lu Y, Wang H T, Lu Z P, Yang W 2021 Mater. Today 46 28.
计量
- 文章访问数: 73
- PDF下载量: 0
- 被引次数: 0