-
采用基于密度泛函理论的第一性原理, 研究了稀土La对bcc-Fe中Cu析出行为的影响. 计算了α-Fe中La原子和Cu原子与空位之间, 以及La原子和Cu原子之间的点缺陷结合能; 在此基础上, 讨论了α-Fe中La对Cu扩散激活能的关系. 结果表明: La原子与空位之间有较强的相互吸引作用, 且对近邻Cu原子也有一定的束缚. 此外, La的加入使Cu原子近邻的空位形成能显著升高, 这表明La, Cu 偏聚区形成空位较为困难. 与此同时, 由于La原子对近邻空位和Cu原子的吸引作用, 使Cu原子向近邻空位跳跃的迁移能有所升高. 迁移能与空位形成能变化的计算结果显示, La原子的加入能够使α-Fe中Cu的扩散激活能显著升高, 从而延缓了铁素体区富铜相的偏聚和析出.The influence of La on the Cu precipitation in bcc-Fe is determined by first-principles density functional calculations. The binding energies of La-vacancy, Cu-vacancy pairs, and La-Cu pair are calculated, and the effects of La atoms on the diffusion activation energy of Cu atoms in bcc-Fe are considered. It is found that there exist strong attractive interactions between La atom and vacancy and between La atom and adjacent Cu atom. In addition, the formation energy of the vacancy adjacent to Cu atom increases significantly with the La addition, suggesting that vacancy is difficult to form in the La and Cu segregation zone. Meantime, we find that the migration energy of Cu atom is enhanced due to the attractions of La atom to adjacent vacancy and Cu atom. The calculated results of the vacancy formation energy and migration energy indicate that Cu atom possesses a higher diffusion activation energy after the La addition, and in turn, delays the segregation and precipitation process of the Cu rich phase in bcc-Fe.
[1] Mulholland M D, Seidman D N 2011 Acta Mater. 59 1881
[2] Deschamps A, Militzer M, Poole W J 2001 ISIJ Int. 41 196
[3] Kolli R P, Seidman D N 2008 Acta Mater. 56 2073
[4] Farzadfar S A, Sanjari M, Jung I H, Essadiqi E, Yue S 2011 Mater. Sci. Eng. A 528 6742
[5] Koen B, Peter T J, Bart B 2013 J. Clean. Prod. 51 1
[6] Meng Z H, Li J B, Guo Y Q, Wang Y 2012 Acta Phys. Sin. 61 107101 (in Chinese) [孟振华, 李俊斌, 郭永权, 王义 2012 61 107101]
[7] Arenas M A, Damborenea J J 2003 Electrochim. Acta 48 3693
[8] Wang H Y, Li W X, Ren H P, Huang L Y, Wang X Y 2010 J. Rare Earth 28 134
[9] Frangini S, Loreti S 2007 Corros. Sci. 49 3969
[10] Wu W X, Jin L, Dong J, Zhang Z Y, Ding W J 2012 Mater. Sci. Eng. A 556 519
[11] Ji J W 2005 Chin. Rare Earth 22 7 (in Chinese) [戢景文 2005 稀土 22 7]
[12] You Y, Yan M F 2013 Comput. Mater. Sci. 73 120
[13] Liu Z C, Ren H P 2007 Diffusion Phase Transformation of Supercooled Austenite (Beijing: Science Press) p75(in Chinese) [刘宗昌, 任慧平 2007 过冷奥氏体扩散型相变 (北京: 科学出版社) 第75页]
[14] Yao P X, Shi J Z 2012 Comput. Mater. Sci. 63 329
[15] Jiang D E, Emily A 2003 Phys. Rev. B 67 214103
[16] Graeme H, Blas P U 2000 J. Chem. Phys. 113 9901
[17] Par O, Christophe D, Janne W 2007 Phys. Rev. B 75 014110
[18] Gorbatov O I, Korzhavyi P A, Ruban A V, Johansson B, Gornostyrev Y N 2011 J. Nucl. Mater. 419 248
[19] Dongwon S, Christopher W 2010 Acta Mater. 58 531
[20] Mantina M, Shang S L, Wang Y, Chen L Q, Liu Z K 2009 Phys. Rev. B 80 184111
[21] Wu Q, Li S S, Ma Y, Gong S K 2012 Chin. Phys. B 21 109102
-
[1] Mulholland M D, Seidman D N 2011 Acta Mater. 59 1881
[2] Deschamps A, Militzer M, Poole W J 2001 ISIJ Int. 41 196
[3] Kolli R P, Seidman D N 2008 Acta Mater. 56 2073
[4] Farzadfar S A, Sanjari M, Jung I H, Essadiqi E, Yue S 2011 Mater. Sci. Eng. A 528 6742
[5] Koen B, Peter T J, Bart B 2013 J. Clean. Prod. 51 1
[6] Meng Z H, Li J B, Guo Y Q, Wang Y 2012 Acta Phys. Sin. 61 107101 (in Chinese) [孟振华, 李俊斌, 郭永权, 王义 2012 61 107101]
[7] Arenas M A, Damborenea J J 2003 Electrochim. Acta 48 3693
[8] Wang H Y, Li W X, Ren H P, Huang L Y, Wang X Y 2010 J. Rare Earth 28 134
[9] Frangini S, Loreti S 2007 Corros. Sci. 49 3969
[10] Wu W X, Jin L, Dong J, Zhang Z Y, Ding W J 2012 Mater. Sci. Eng. A 556 519
[11] Ji J W 2005 Chin. Rare Earth 22 7 (in Chinese) [戢景文 2005 稀土 22 7]
[12] You Y, Yan M F 2013 Comput. Mater. Sci. 73 120
[13] Liu Z C, Ren H P 2007 Diffusion Phase Transformation of Supercooled Austenite (Beijing: Science Press) p75(in Chinese) [刘宗昌, 任慧平 2007 过冷奥氏体扩散型相变 (北京: 科学出版社) 第75页]
[14] Yao P X, Shi J Z 2012 Comput. Mater. Sci. 63 329
[15] Jiang D E, Emily A 2003 Phys. Rev. B 67 214103
[16] Graeme H, Blas P U 2000 J. Chem. Phys. 113 9901
[17] Par O, Christophe D, Janne W 2007 Phys. Rev. B 75 014110
[18] Gorbatov O I, Korzhavyi P A, Ruban A V, Johansson B, Gornostyrev Y N 2011 J. Nucl. Mater. 419 248
[19] Dongwon S, Christopher W 2010 Acta Mater. 58 531
[20] Mantina M, Shang S L, Wang Y, Chen L Q, Liu Z K 2009 Phys. Rev. B 80 184111
[21] Wu Q, Li S S, Ma Y, Gong S K 2012 Chin. Phys. B 21 109102
计量
- 文章访问数: 5573
- PDF下载量: 538
- 被引次数: 0