Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectral shaping of picosecond petawatt laser system based on lithium niobate birefringent crystal

Zhang Teng Li Da-Wei Wang Tao Cui Yong Zhang Tian-Xiong Wang Li Zhang Jie Xu Guang

Citation:

Spectral shaping of picosecond petawatt laser system based on lithium niobate birefringent crystal

Zhang Teng, Li Da-Wei, Wang Tao, Cui Yong, Zhang Tian-Xiong, Wang Li, Zhang Jie, Xu Guang
PDF
HTML
Get Citation
  • In recent years, chirped pulse amplification (CPA) technology injects vitality into the development of ultra-strong and ultra-short lasers. However, in the CPA based gain media, the gain narrowing effect limits the higher output of ultrashort pulse in energy, power, signal-to-noise ratio. In order to compensate for the gain narrowing caused by the broadband amplification of Nb:glass in picosecond pewter laser system, a method of high-energy spectral shaping is proposed based on LiNbO3 birefringent crystal, and the spectral phase introduced by the crystal is analysed for the first time. Based on the strict Jones matrix, the transmittance function of birefringent crystal and the spectral phase introduced by the crystal are obtained. Further, three kinds of birefringent crystals are compared among each other, and the results show that the higher birefringence and the smaller thickness are required to achieve the same intensity modulation. For the laser pulse at 1053 nm, LiNbO3 is selected as the spectral shaping crystal due to its high birefringence, large diameter, and non-deliquescent. The influences of crystal thickness, tilt angle, and in-plane rotation angle on the spectral intensity modulation are simulated theoretically, and the results show the above parameters affect the modulation bandwidth, center wavelength, and modulation depth of the shaping. By analyzing the spectral phase introduced by the crystal, it is found that the dispersion of each order changes with the thickness of the crystal, the tilt angle, and the in-plane rotation angle, and it is the most sensitive to the change of thickness. In addition, by controlling the dispersion of each order, the influence on the pulse signal-to-noise ratio can be weakened during spectrum shaping. On the basis of theoretical analysis, the shaping experiment with a center wavelength of 1053 nm, modulation bandwidth of 10 nm, and modulation depth of 80% is carried out. And the phase introduced by the LiNbO3 is measured. The experimental results are consistent with the theoretical analysis. For the Shenguang Ⅱ high-energy petawatt laser system, by the above-mentioned shaping scheme, a high-energy broadband laser output of 1700 J and 6 nm (FWHM) is realized for the first time in China, which is 2 times that at 3.2 nm when it is not shaped. The research effectively compensates for the Nb:glass gain narrowing effect, and will provide references for the parameter design, material selection and spectral phase compensation in the birefringent spectral shaping.
      Corresponding author: Li Da-Wei, lidw135@siom.ac.cn ; Xu Guang, xuguang@siom.ac.cn
    • Funds: Project supported by the Major Program of the Zhangjiang National Innovation Demonstration Zone Special Development Fund, China (Grant No. ZJ2020-ZD-006)
    [1]

    Strickland D, Mourou G 1985 Opt. Commun. 55 219Google Scholar

    [2]

    Sauteret C, Husson D, Thiell G, Seznec S, Gary S, Migus A, Mourou G 1991 Opt. Lett. 16 238Google Scholar

    [3]

    Aoyama M, Yamakawa K, Akahane Y, Ma J, Inoue N, Ueda H, Kiriyama H 2003 Opt. Lett. 28 1594Google Scholar

    [4]

    Danson C N, Haefner C, Bromage J, et al. 2019 High Power Laser Sci. Eng. 7 e54Google Scholar

    [5]

    Stuart B C, Herman S, Perry M D 1994 Conference on Lasers and Electro-Optics (California: Anaheim) pJFA3

    [6]

    曹东茂, 魏志义, 滕浩, 夏江帆, 张杰, 侯洵 2000 49 1202Google Scholar

    Cao D M, Wei Z Y, Teng H, Xia J F, Zhang J, Hou X 2000 Acta Phys. Sin. 49 1202Google Scholar

    [7]

    楚晓亮, 张彬, 蔡邦维, 魏晓峰, 朱启华, 黄小军, 袁晓东, 曾小明, 刘兰琴, 王逍, 王晓东, 周凯南, 郭仪 2005 54 4696Google Scholar

    Wei X L, Zhang B, Cai B W, Wei X F, Zhu Q H, Huang X J, Yuan X D, Zeng X M, Liu L Q, Wang X, Wang X D, Zhou K N, Guo Y 2005 Acta Phys. Sin. 54 4696Google Scholar

    [8]

    郭爱林, 杨庆伟, 谢兴龙, 高奇, 薛志玲, 李美荣 2007 光学学报 27 272Google Scholar

    Guo A L, Yang Q W, Xie X L, Gao Q, Xue Z L, Li M R 2007 Acta Optica Sinica 27 272Google Scholar

    [9]

    郭爱林, 杨庆伟, 张福领, 孙美智, 毕群玉, 谢兴龙, 朱健强 2009 光学学报 29 1582Google Scholar

    Guo A L, Yang Q W, Zhang F L, Sun M Z, Bi Q Y, Xie X L, Zhu J Q 2009 Acta Optica Sinica 29 1582Google Scholar

    [10]

    姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 63 184201Google Scholar

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201Google Scholar

    [11]

    Xia G, Fan W, Huang D J, Cheng H, Guo J T, Wang X Q 2019 High Power Laser Sci. Eng. 7 E9Google Scholar

    [12]

    刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王逍, 郭仪, 袁晓东, 彭志涛, 唐晓东 2005 54 2764Google Scholar

    Chu L Q, Peng H S, Wei X F, Zhu Q H, Huang X J, Wang X D, Zhou K N, Zeng X M, Wang X, Guo Y, Yuan X D, Peng Z T, Tang X D 2005 Acta Phys. Sin. 54 2764Google Scholar

    [13]

    Rambo P 2008 International Conference on Ultrahigh Intensity Lasers (China: Shanghai) pp27−31

    [14]

    Preuss D R, Gole J L 1980 Appl. Opt. 19 702Google Scholar

    [15]

    Barty C P, Korn G, Raksi F, Rose-Petruck C, Squier J, Tien A C, Wilson K R, Yakovlev V V, Yamakawa K 1996 Opt. Lett. 21 219Google Scholar

    [16]

    Lu X M, Li C, Leng Y X, Wang C, Zhang C M, Liang X Y, Li R X, Xu Z Z 2007 Chin. Opt. Lett. 5 493

    [17]

    张颖, 魏晓峰, 朱启华, 谢旭东, 王凤蕊, 曾小明, 应纯同 2008 光学学报 28 1767Google Scholar

    Zhang Y, Wei X F, Zhu Q H, Xie X D, Wang F R, Zeng X M, Ying C T 2008 Acta Optica Sinica 28 1767Google Scholar

    [18]

    Heritage J P, Weiner A M, Thurston R N 1985 Opt. Lett. 10 609Google Scholar

    [19]

    Spaeth M L, Manes K R, Kalantar D H, et al. 2017 Fusion Sci. Technol. 69 25Google Scholar

    [20]

    朱鹏飞, 杨镜新, 薛绍林, 李美荣, 林尊琪 2003 中国激光 30 1075Google Scholar

    Zhu P F, Yang J X, Xue S L, Li M R, Lin Z Q 2003 Chinese J. Lasers 30 1075Google Scholar

    [21]

    Wu F, Wang C, Hu J, Zhang Z, Yang X, Liu X, Liu Y, Ji P, Bai P, Qian J, Gui J, Xu Y, Leng Y 2020 Opt. Express 28 31743Google Scholar

    [22]

    Zhu X 1994 Appl. Opt. 33 3502Google Scholar

    [23]

    Xu G, Wang T, Li Z Y, Dai Y P, Lin Z Q, Gu Y, Zhu J Q 2008 Rev. Laser Eng. 36 1172Google Scholar

    [24]

    杨庆伟 2009 博士学位论文 (上海: 中国科学院上海光学精密机械研究所)

    Yang Q W 2009 Ph. D. Dissertation (Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)

  • 图 1  倾斜双折射平板的厚度t、倾斜角θ和面内旋转角ϕ示意图[14]

    Figure 1.  Schematic diagram of the thickness t, tilt angle θ, and in-plane rotation angle ϕ of the tilted birefringent plate[14].

    图 2  BBO、铌酸锂(LiNbO3)和石英(quartz) 3种晶体的对比图 (a) 3种晶体的双折射率曲线; (b) 3种晶体实现相同强度调制的透过率曲线

    Figure 2.  Comparison graph of three crystals of BBO, LiNbO3, and quartz: (a) The birefringence curves of three crystals; (b) the transmittance curves of the three kinds of crystals achieve the same intensity modulation.

    图 3  θ = 85°, ϕ = 30°, t = 1.0, 1.5, 2.0 mm时, 透过率函数、晶体引入的光谱总相位及各阶色散的变化曲线 (a) t = 1.0, 1.5, 2.0 mm时, 透过率函数、光谱总相位随波长的变化曲线; (b) GVD, GDD, TOD, FOD随厚度t的变化

    Figure 3.  The curve of transmittance function, total phase of the spectrum, and each order dispersion introduced by the crystal with θ = 85°, ϕ = 30°, t = 1.0, 1.5, 2.0 mm: (a) The transmittance function and total phase of spectrum changes with wavelength; (b) GVD, GDD, TOD, FOD changes with thickness t.

    图 4  ϕ = 30°, t = 1.5 mm, θ = 80°, 85°, 90°时, 透过率函数、晶体引入的光谱总相位及各阶色散的变化曲线 (a) 透过率函数、光谱总相位随波长的变化曲线; (b) GVD, GDD, TOD, FOD随厚度θ的变化

    Figure 4.  The curve of transmittance function, total phase of the spectrum and each order dispersion introduced by the crystal with ϕ = 30°, t = 1.5 mm, θ = 80°, 85°, 90°: (a) The transmittance function and total phase of spectrum changes with wavelength; (b) GVD, GDD, TOD, FOD changes with thickness θ.

    图 5  θ = 85°, t = 1.5 mm, ϕ = 25°, 30°, 35°时, 透过率函数、晶体引入的光谱总相位及各阶色散的变化曲线 (a) 透过率函数、光谱总相位随波长的变化曲线; (b) GVD, GDD, TOD, FOD随厚度ϕ的变化

    Figure 5.  The curve of transmittance function, total phase of the spectrum, and each order dispersion introduced by the crystal with θ = 85°, t = 1.5 mm, ϕ = 25°, 30°, 35°: (a) The transmittance function and total phase of spectrum changes with wavelength; (b) GVD, GDD, TOD, FOD changes with thickness ϕ.

    图 6  双折射晶体引入的三、四阶相位 (a) 三阶相位; (b) 四阶相位

    Figure 6.  Third and fourth order phase introduced by birefringent crystal: (a) Third order phase; (b) fourth order phase.

    图 7  在高斯信号中加入三、四阶相位后的时域脉冲图 (a) 线性坐标时域图; (b)对数坐标时域图

    Figure 7.  Time-domain pulse diagram of third and fourth order phase added to Gaussian signal: (a) Linear coordinate time domain diagram; (b) logarithmic coordinate time domain diagram.

    图 8  皮秒拍瓦激光系统装置框图及注入钕玻璃放大系统前的预补偿光谱图 (a) 神光Ⅱ高能拍瓦激光系统装置框图[23]; (b) 强度调制前后注入钕玻璃放大系统前的预补偿光谱实验和模拟图

    Figure 8.  Block diagram of picosecond petawatt laser system and pre-compensation spectrum before injection of Nb:glass amplifier system: (a) Block diagram of ShenguangⅡhigh-energy petawatt laser system[23]; (b) pre-compensation spectrum experiment and simulation diagram before and after intensity modulation before injection of Nb:glass amplifier system.

    图 9  相位测量实验光路图及相位测量结果 (a) 相位测量实验光路图; (b)晶体引入相位的实验测量与模拟图

    Figure 9.  Beam path diagram of phase measurement experiment and phase measurement results: (a) Beam path diagram of phase measurement experiment; (b) experimental measurement and simulation diagram of the phase introduced by the crystal.

    图 10  补偿增益窄化前后的输出光谱图与傅里叶变换极限脉冲比较图 (a) 补偿增益窄化与未补偿增益窄化的输出光谱实验图; (b) 补偿增益窄化与未补偿增益窄化的傅里叶变换极限脉冲

    Figure 10.  Comparison of output spectrum and Fourier transform limit pulse before and after compensation gain narrowing: (a) Experimental graphs of output spectra of compensated gain narrowing and uncompensated gain narrowing; (b) the Fourier transform limit pulse with compensated gain narrowing and uncompensated gain narrowing.

    Baidu
  • [1]

    Strickland D, Mourou G 1985 Opt. Commun. 55 219Google Scholar

    [2]

    Sauteret C, Husson D, Thiell G, Seznec S, Gary S, Migus A, Mourou G 1991 Opt. Lett. 16 238Google Scholar

    [3]

    Aoyama M, Yamakawa K, Akahane Y, Ma J, Inoue N, Ueda H, Kiriyama H 2003 Opt. Lett. 28 1594Google Scholar

    [4]

    Danson C N, Haefner C, Bromage J, et al. 2019 High Power Laser Sci. Eng. 7 e54Google Scholar

    [5]

    Stuart B C, Herman S, Perry M D 1994 Conference on Lasers and Electro-Optics (California: Anaheim) pJFA3

    [6]

    曹东茂, 魏志义, 滕浩, 夏江帆, 张杰, 侯洵 2000 49 1202Google Scholar

    Cao D M, Wei Z Y, Teng H, Xia J F, Zhang J, Hou X 2000 Acta Phys. Sin. 49 1202Google Scholar

    [7]

    楚晓亮, 张彬, 蔡邦维, 魏晓峰, 朱启华, 黄小军, 袁晓东, 曾小明, 刘兰琴, 王逍, 王晓东, 周凯南, 郭仪 2005 54 4696Google Scholar

    Wei X L, Zhang B, Cai B W, Wei X F, Zhu Q H, Huang X J, Yuan X D, Zeng X M, Liu L Q, Wang X, Wang X D, Zhou K N, Guo Y 2005 Acta Phys. Sin. 54 4696Google Scholar

    [8]

    郭爱林, 杨庆伟, 谢兴龙, 高奇, 薛志玲, 李美荣 2007 光学学报 27 272Google Scholar

    Guo A L, Yang Q W, Xie X L, Gao Q, Xue Z L, Li M R 2007 Acta Optica Sinica 27 272Google Scholar

    [9]

    郭爱林, 杨庆伟, 张福领, 孙美智, 毕群玉, 谢兴龙, 朱健强 2009 光学学报 29 1582Google Scholar

    Guo A L, Yang Q W, Zhang F L, Sun M Z, Bi Q Y, Xie X L, Zhu J Q 2009 Acta Optica Sinica 29 1582Google Scholar

    [10]

    姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 63 184201Google Scholar

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201Google Scholar

    [11]

    Xia G, Fan W, Huang D J, Cheng H, Guo J T, Wang X Q 2019 High Power Laser Sci. Eng. 7 E9Google Scholar

    [12]

    刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王逍, 郭仪, 袁晓东, 彭志涛, 唐晓东 2005 54 2764Google Scholar

    Chu L Q, Peng H S, Wei X F, Zhu Q H, Huang X J, Wang X D, Zhou K N, Zeng X M, Wang X, Guo Y, Yuan X D, Peng Z T, Tang X D 2005 Acta Phys. Sin. 54 2764Google Scholar

    [13]

    Rambo P 2008 International Conference on Ultrahigh Intensity Lasers (China: Shanghai) pp27−31

    [14]

    Preuss D R, Gole J L 1980 Appl. Opt. 19 702Google Scholar

    [15]

    Barty C P, Korn G, Raksi F, Rose-Petruck C, Squier J, Tien A C, Wilson K R, Yakovlev V V, Yamakawa K 1996 Opt. Lett. 21 219Google Scholar

    [16]

    Lu X M, Li C, Leng Y X, Wang C, Zhang C M, Liang X Y, Li R X, Xu Z Z 2007 Chin. Opt. Lett. 5 493

    [17]

    张颖, 魏晓峰, 朱启华, 谢旭东, 王凤蕊, 曾小明, 应纯同 2008 光学学报 28 1767Google Scholar

    Zhang Y, Wei X F, Zhu Q H, Xie X D, Wang F R, Zeng X M, Ying C T 2008 Acta Optica Sinica 28 1767Google Scholar

    [18]

    Heritage J P, Weiner A M, Thurston R N 1985 Opt. Lett. 10 609Google Scholar

    [19]

    Spaeth M L, Manes K R, Kalantar D H, et al. 2017 Fusion Sci. Technol. 69 25Google Scholar

    [20]

    朱鹏飞, 杨镜新, 薛绍林, 李美荣, 林尊琪 2003 中国激光 30 1075Google Scholar

    Zhu P F, Yang J X, Xue S L, Li M R, Lin Z Q 2003 Chinese J. Lasers 30 1075Google Scholar

    [21]

    Wu F, Wang C, Hu J, Zhang Z, Yang X, Liu X, Liu Y, Ji P, Bai P, Qian J, Gui J, Xu Y, Leng Y 2020 Opt. Express 28 31743Google Scholar

    [22]

    Zhu X 1994 Appl. Opt. 33 3502Google Scholar

    [23]

    Xu G, Wang T, Li Z Y, Dai Y P, Lin Z Q, Gu Y, Zhu J Q 2008 Rev. Laser Eng. 36 1172Google Scholar

    [24]

    杨庆伟 2009 博士学位论文 (上海: 中国科学院上海光学精密机械研究所)

    Yang Q W 2009 Ph. D. Dissertation (Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)

  • [1] Zhao Na, Ou-yang Jian-Ming, Zou De-Bin, Zhang Guo-Bo, Gan Long-Fei, Shao Fu-Qiu. Hundreds-petawatt laser pulses shaping and heavy ion acceleration based on conical plasma channels. Acta Physica Sinica, 2024, 73(16): 165202. doi: 10.7498/aps.73.20240696
    [2] Wang Xiao-Ying, Xing Yu-Ting, Chen Run-Zhi, Jia Xue-Qi, Wu Ji-Hua, Jiang Jin, Li Lian-Yong, Chang Guo-Qing. Simultaneous label-free autofluorescence-multiharmonic microscopy driven by femtosecond sources based on self-phase modulation enabled spectral selection. Acta Physica Sinica, 2022, 71(10): 104204. doi: 10.7498/aps.71.20212282
    [3] Liu Jian-Xin, Zhao Gang, Zhou Yue-Ting, Zhou Xiao-Bin, Ma Wei-Guang. Birefringence effect of high reflectivity cavity mirrors and its influence on cavity enhanced spectroscopy. Acta Physica Sinica, 2022, 71(8): 084202. doi: 10.7498/aps.71.20212090
    [4] Wang Di, Han Tao, Qian Huang-He, Liu Zhi-Yi, Ding Zhi-Hua. An absolute wavenumber calibration method based on characteristic spectral line and constrained fitting phase. Acta Physica Sinica, 2022, 71(21): 214203. doi: 10.7498/aps.71.20220314
    [5] Wang Di,  Han Tao,  Qian Huang-he,  Liu Zhi-yi,  Ding Zhi-hua. An Absolute Wavenumber Calibration Method based on Characteristic Spectral Line and Constrained Fitting Phase. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120220314
    [6] Qiu Yi-Geng, Fan Yuan-Yuan, Yan Bo-Xia, Wang Yan-Wei, Wu Yi-Hang, Han Zhe, Qi Yan, Lu Ping. Design and experiment of light field shaping system for three-dimensional extended light source used in photoacoustic spectrometer. Acta Physica Sinica, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [7] Li Da-Wei, Wang Tao, Yin Xiao-Lei, Li Jia-Mei, Wang Li, Zhang Teng, Zhang Tian-Xiong, Cui Yong, Lu Xing-Qiang, Wang Li, Zhang Jie, Xu Guang. Accurate model and performance analysis of broadband pulsed amplification in picosecond petawatt laser system. Acta Physica Sinica, 2021, 70(10): 104202. doi: 10.7498/aps.70.20201830
    [8] Cao Qi-Zhi, Yuan Chang-An, Hu Bao-Qing, Ren Wen-Yi, Zhao Yin-Jun, Zhang Jing, Li Jian-Ying, Deng Ting, Mingwu Jin. Principle analysis of snapshot Mueller matrix imaging polarimeter using birefringent crystal. Acta Physica Sinica, 2018, 67(10): 104209. doi: 10.7498/aps.67.20172604
    [9] Qin Shuang, Wang Zhao-Hua, Wang Xian-Zhi, He Hui-Jun, Shen Zhong-Wei, Wei Zhi-Yi. Influence of linear chirp on the output characteristics of cross polarized wave with saturated power density. Acta Physica Sinica, 2017, 66(9): 094206. doi: 10.7498/aps.66.094206
    [10] Wang Hong-Wei, Hua Deng-Xin, Wang Yu-Feng, Gao Peng, Zhao Hu. Design and analysis of new spectroscopic system of Raman lidar for detection of atmospheric water vapor. Acta Physica Sinica, 2013, 62(12): 120701. doi: 10.7498/aps.62.120701
    [11] Wen Jin-Hui, Liu Jun, Zhang Hui, Chen Jia-Long, Huang Zi-Zhu, Jiao Zhong-Xing, Lai Tian-Shu. Characterization of chirped pulses with modified-zero-additional-phase spectral phase interferometry for direct electric-field reconstruction. Acta Physica Sinica, 2010, 59(1): 370-375. doi: 10.7498/aps.59.370
    [12] Ji Ling-Ling, Chen Wei, Cao Ying-Chun, Yang Zhen-Yu, Lu Pei-Xiang. Supercontinuum generation based on fission of higher-order solitons in bi-refringent photonic crystal fibers. Acta Physica Sinica, 2009, 58(8): 5462-5466. doi: 10.7498/aps.58.5462
    [13] Li Ming, Zhang Bin, Dai Ya-Ping, Wang Tao, Fan Zheng-Xiu, Huang Wei. Multilayer dielectric thin film reflector for spectrum reshaping of chirped pulse laser in Nd:glass chirped pulse amplification system. Acta Physica Sinica, 2008, 57(8): 4898-4903. doi: 10.7498/aps.57.4898
    [14] Xie Xu-Dong, Wang Xiao, Zhu Qi-Hua, Zeng Xiao-Ming, Wang Feng-Rui, Huang Xiao-Jun, Zhou Kai-Nan, Wang Fang, Jiang Dong-Bin, Huang Zheng, Sun Li, Liu Hua, Wang Xiao-Dong, Deng Wu, Guo Yi, Zhang Xiao-Mi. High energy chirped pulse characteristics observed by spectral-resolved streak camera. Acta Physica Sinica, 2007, 56(11): 6463-6467. doi: 10.7498/aps.56.6463
    [15] Wang Peng, Zhao Huan, Zhao Yan-Ying, Wang Zhao-Hua, Tian Jin-Rong, Li De-Hua, Wei Zhi-Yi. Pulse width measurement of ultra-broad-bandwidth Ti: sapphire oscillator using SPIDER technique. Acta Physica Sinica, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
    [16] Deng Yu-Qiang, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue. Effects of noise on spectral phase reconstruction with wavelet analysis. Acta Physica Sinica, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
    [17] Deng Yu-Qiang, Wu Zu-Bin, Chen Sheng-Hua, Chai Lu, Wang Qing-Yue, Zhang Zhi-Gang. Wavelet transform analysis for phase reconstruction of spectral shearing interferometry of ultrashort optical pulses. Acta Physica Sinica, 2005, 54(8): 3716-3721. doi: 10.7498/aps.54.3716
    [18] Wang Peng, Wang Zhao-Hua, Wei Zhi-Yi, Zheng Jia-An, Sun Jing-Hua, Zhang Jie. Measurement of spectral phase of femotosecond laser pulse using SPIDER technique. Acta Physica Sinica, 2004, 53(9): 3004-3009. doi: 10.7498/aps.53.3004
    [19] ZHANG YAN-PENG, GAN CHEN-LI, ZHU JING-PING, TANG TIAN-TONG, FU PAN-MING. ENERGY-LEVEL DIFFERENCE AND LASER ABSOLUTE FREQUENCY MEASUREMENT BY POLARIZATION BEATS SPECTROSCOPY WITH PHASE-CONJUGATION GEOMETRY. Acta Physica Sinica, 1999, 48(9): 1667-1675. doi: 10.7498/aps.48.1667
    [20] LASER CRYSTALS RESEARCH GROUP. THERMALLY INDUCED BIREFRINGENCE IN YAG RODS IN THE (001) DIRECTION. Acta Physica Sinica, 1977, 26(2): 93-99. doi: 10.7498/aps.26.93
Metrics
  • Abstract views:  5527
  • PDF Downloads:  79
  • Cited By: 0
Publishing process
  • Received Date:  16 October 2020
  • Accepted Date:  20 November 2020
  • Available Online:  05 April 2021
  • Published Online:  20 April 2021

/

返回文章
返回
Baidu
map