-
随着雷达组网技术的发展成熟,未来电磁隐身对抗中双站雷达散射截面(Radar Cross Section,RCS)减缩将比单站更为重要。人工电磁超表面为双站RCS减缩提供了全新的技术途径。然而,受制于大规模阵列优化耗时及双站RCS减缩全空间最值特性,目前的双站RCS减缩超表面设计还存在效率不高、性能较差的问题。鉴于此,本文提出了一种小样本条件下的卷积神经网络(Convolutional Neural Network,CNN)方法,通过定向优化超表面相位分布,实现雷达回波全空间均匀散射,从而达到双站RCS减缩效果。本方法结合了卷积特征提取、残差增强与全连接优化模块,配合自定义损失函数,可高效捕捉漫反射相位与RCS全空间最值的多维度复杂关系。理论计算、全波仿真和样品测试结果表明,在7.26 GHz-10.74 GHz频段内,利用本方法设计的超表面可实现10 dB以上的双站RCS减缩,相比传统优化算法减缩效果提升17.2%,且优化效率显著提高,有望为武器装备的全空间电磁隐身提供新的技术思路。
-
关键词:
- 超表面 /
- 双站RCS减缩 /
- 卷积神经网络(CNN)
Radar Cross Section (RCS), a crucial physical quantity that characterizes the backscattering intensity of targets under radar illumination, is the primary metric for assessing stealth capabilities. With the progression of radar detection technologies, RCS reduction has become a forefront research topic in radar stealth, aiming to minimize target detectability. As radar networking technologies mature, Bistatic Radar RCS reduction is gaining increasing significance over Monostatic Radar RCS reduction in future electromagnetic stealth countermeasures. Artificial electromagnetic metasurface have introduced innovative technical pathways for Bistatic Radar RCS reduction. However, current metasurface designs still face challenges related to inefficiency and suboptimal performance, primarily due to the time-consuming nature of large-scale array optimization and the global extremum characteristics of Bistatic Radar RCS reduction. To overcome these limitations, this study proposes a Few-Shot Convolutional Neural Network (CNN)-based approach, which achieves uniform full-space radar echo scattering by directionally optimizing metasurface phase distributions, thereby enabling effective Bistatic Radar RCS reduction. The approach integrates convolutional feature extraction, residual enhancement, and fully connected optimization modules, alongside a customized loss function, to efficiently capture the complex multidimensional relationships between diffuse reflection phases and the full-space RCS extrema. Theoretical calculations, full-wave simulations, and experimental tests show that the metasurface designed with this approach achieve over 10 dB of Bistatic Radar RCS reduction within the 7.26 GHz to 10.74 GHz frequency range. The method also ensures uniform diffuse reflection across the full space for various incidence angles (30°、 45°、 60°). Compared to traditional optimization algorithms, this method enhances RCS reduction by 17.2% while significantly improving computational efficiency. This approach offers a promising new technical paradigm for achieving full-space electromagnetic stealth in advanced weapon systems. -
[1] Rao G A, Mahulikar S P 2002 Aeronaut. J. 106629
[2] Ball R E, Albrecht R S, Horne R L 2003 The Fundamentals of Aircraft Combat Survivability: Analysis and Design (2nd ed.) (Reston, VA: AIAA) pp8–56
[3] Westwick P 2019 Stealth:The Secret Contest to Invent Invisible Aircraft (Oxford: Oxford University Press) pp5–42
[4] Singh H, Antony S, Jha R M 2016 Plasma-based radar cross section reduction (Singapore: Springer) pp1–46
[5] Knott E F 2012 Radar Cross Section Measurements (New York: Springer) pp12–36
[6] Knott E F, Schaeffer J R, Tuley M T 2004 Radar Cross Section (2nd ed.) (Reston, VA: SciTech Publishing) pp4–22
[7] Kim S H, Lee S Y, Zhang Y, Park S J, Gu J 2023 Adv. Sci. 102303104
[8] Ananth P B, Abhiram N, Krishna K H, Nisha M S 2021 Mater. Today Proc. 474872
[9] Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett 111187402
[10] Wang J, Yang R, Ma R, Tian J, Zhang W 2020 IEEE Access 8105815
[11] Liu Y, Zhao X 2014 IEEE Antennas Wireless Propag. Lett. 131473
[12] Yu N, Genevet P, Kats Ma, Aieta F, Tetienne JP, Capasso F, Gaburro Z 2011 Science 334333
[13] Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag 633522
[14] Abdullah M, Koziel S 2022 IEEE Trans. Microw. Theory Techn. 70264
[15] Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P de 2007 IEEE Trans. Antennas Propag 553630
[16] Chen W, Balanis C A, Birtcher C R 2015 IEEE Trans. Antennas Propag 632636
[17] Sang D, Chen Q, Ding L, Guo M, Fu Y 2019 IEEE Trans. Antennas Propag 672604
[18] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218
[19] Liu X, Gao J, Xu L, Cao X, Zhao Y, Li S 2016 IEEE Antennas Wireless Propag. Lett. 16724
[20] Fu C, Han L, Liu C, Lu X, Sun Z 2021 IEEE Trans. Antennas Propag. 702352
[21] Li W, Huang N, Kang Y, Zou T, Ying Y, Yu J, Zheng J, Qiao L, Li J, Che S 2024 IEICE Electron. Express 2120240246
[22] Qi W j, Yu C, Du J l, Zhao Y j 2022 Int. J. RF Microw. Comput. Aided Eng. 3223306
[23] Koziel S, Abdullah M 2020 IEEE Trans. Microw. Theory Techn. 692028
[24] Tao S, Pan X T, Li M K, Xu S H, Yang F 2020 IEEE J. Emerg. Sel. Top. Circuits Syst. 10114
[25] Yang X Y 2023 M.S. Thesis (Nanjing: Southeast University) (in Chinese) [杨欣雨2023硕士学位论文(南京: 东南大学)]
[26] Yuan F, Mao R Q, Gao M, Chen Q, Fu Q Y 2022 Acta Phys. Sin. 71084102(in Chinese) [袁方, 毛瑞棋, 高冕, 郑月军, 陈强, 付云起2022 71084102]
[27] Yuan F, Wang G M, Xu H X, Cai T, Zou X J, Pang Z H 2017 EEE Antennas Wirel. Propag. Lett. 163188
[28] Han X M, Xu H j, Chang Y P, Lin M, Zhang W Y, Xin W 2020 IEEE Access 8162313
[29] Zhou Y, Cao X Y, Gao J, Li S, Liu X 2017 IEEE Access 531381
[30] Katoch S, Chauhan SS, Kumar V 2021 Multimed. Tools Appl. 808091
[31] Wang D S, Tan D P, Liu L 2018 Soft Comput. 22387
[32] Pan X, Xue L, Lu Y, Sun N 2019 Multimed. Tools Appl. 7529921
[33] Dumoulin V, Visin F 2016 Comput. Sci. 0307285
[34] Xu B, Wang N Y, Chen T Q, Li M 2015 arXiv:1505.00853[cs.LG]
[35] Bjorck N, Gomes C P, Selman B, Weinberger K Q 2018 arXiv:1806.02375[cs.LG]
[36] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R 2014 J. Mach. Learn. Res. 151929
[37] Dubey S R, Singh S K, Chaudhuri B B 2022 Neurocomputing 50392
[38] Zhou P, Xie X, Lin Z, Yan S 2024 IEEE Trans. Pattern Anal. Mach. Intell. 466486
[39] Shi G, Zhang J, Li H, Wang C 2019 Neural Process. Lett. 5057
[40] Al-Kababji A, Bensaali F, Dakua S P 2022 arXiv:2202.06373[cs.CV]
[41] Yuan F, Xu H X, Jia X Q, Wang G M, Fu Y Q 2020 IEEE Trans. Antennas Propag. 682463
计量
- 文章访问数: 121
- PDF下载量: 7
- 被引次数: 0