搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积神经网络的双站RCS减缩超表面设计

朱顺凯 袁方 胡凯 皮涛涛 朱熙铖 李程

引用本文:
Citation:

基于卷积神经网络的双站RCS减缩超表面设计

朱顺凯, 袁方, 胡凯, 皮涛涛, 朱熙铖, 李程

Design of Bistatic RCS Reduction Metasurface Based on Convolutional Neural Networks

ZHU Shunkai, YUAN Fang, HU Kai, PI Taotao, ZHU Xicheng, LI Cheng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 随着雷达组网技术的发展成熟,未来电磁隐身对抗中双站雷达散射截面(Radar Cross Section,RCS)减缩将比单站更为重要。人工电磁超表面为双站RCS减缩提供了全新的技术途径。然而,受制于大规模阵列优化耗时及双站RCS减缩全空间最值特性,目前的双站RCS减缩超表面设计还存在效率不高、性能较差的问题。鉴于此,本文提出了一种小样本条件下的卷积神经网络(Convolutional Neural Network,CNN)方法,通过定向优化超表面相位分布,实现雷达回波全空间均匀散射,从而达到双站RCS减缩效果。本方法结合了卷积特征提取、残差增强与全连接优化模块,配合自定义损失函数,可高效捕捉漫反射相位与RCS全空间最值的多维度复杂关系。理论计算、全波仿真和样品测试结果表明,在7.26 GHz-10.74 GHz频段内,利用本方法设计的超表面可实现10 dB以上的双站RCS减缩,相比传统优化算法减缩效果提升17.2%,且优化效率显著提高,有望为武器装备的全空间电磁隐身提供新的技术思路。
    Radar Cross Section (RCS), a crucial physical quantity that characterizes the backscattering intensity of targets under radar illumination, is the primary metric for assessing stealth capabilities. With the progression of radar detection technologies, RCS reduction has become a forefront research topic in radar stealth, aiming to minimize target detectability. As radar networking technologies mature, Bistatic Radar RCS reduction is gaining increasing significance over Monostatic Radar RCS reduction in future electromagnetic stealth countermeasures. Artificial electromagnetic metasurface have introduced innovative technical pathways for Bistatic Radar RCS reduction. However, current metasurface designs still face challenges related to inefficiency and suboptimal performance, primarily due to the time-consuming nature of large-scale array optimization and the global extremum characteristics of Bistatic Radar RCS reduction. To overcome these limitations, this study proposes a Few-Shot Convolutional Neural Network (CNN)-based approach, which achieves uniform full-space radar echo scattering by directionally optimizing metasurface phase distributions, thereby enabling effective Bistatic Radar RCS reduction. The approach integrates convolutional feature extraction, residual enhancement, and fully connected optimization modules, alongside a customized loss function, to efficiently capture the complex multidimensional relationships between diffuse reflection phases and the full-space RCS extrema. Theoretical calculations, full-wave simulations, and experimental tests show that the metasurface designed with this approach achieve over 10 dB of Bistatic Radar RCS reduction within the 7.26 GHz to 10.74 GHz frequency range. The method also ensures uniform diffuse reflection across the full space for various incidence angles (30°、 45°、 60°). Compared to traditional optimization algorithms, this method enhances RCS reduction by 17.2% while significantly improving computational efficiency. This approach offers a promising new technical paradigm for achieving full-space electromagnetic stealth in advanced weapon systems.
  • [1]

    Rao G A, Mahulikar S P 2002 Aeronaut. J. 106629

    [2]

    Ball R E, Albrecht R S, Horne R L 2003 The Fundamentals of Aircraft Combat Survivability: Analysis and Design (2nd ed.) (Reston, VA: AIAA) pp8–56

    [3]

    Westwick P 2019 Stealth:The Secret Contest to Invent Invisible Aircraft (Oxford: Oxford University Press) pp5–42

    [4]

    Singh H, Antony S, Jha R M 2016 Plasma-based radar cross section reduction (Singapore: Springer) pp1–46

    [5]

    Knott E F 2012 Radar Cross Section Measurements (New York: Springer) pp12–36

    [6]

    Knott E F, Schaeffer J R, Tuley M T 2004 Radar Cross Section (2nd ed.) (Reston, VA: SciTech Publishing) pp4–22

    [7]

    Kim S H, Lee S Y, Zhang Y, Park S J, Gu J 2023 Adv. Sci. 102303104

    [8]

    Ananth P B, Abhiram N, Krishna K H, Nisha M S 2021 Mater. Today Proc. 474872

    [9]

    Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett 111187402

    [10]

    Wang J, Yang R, Ma R, Tian J, Zhang W 2020 IEEE Access 8105815

    [11]

    Liu Y, Zhao X 2014 IEEE Antennas Wireless Propag. Lett. 131473

    [12]

    Yu N, Genevet P, Kats Ma, Aieta F, Tetienne JP, Capasso F, Gaburro Z 2011 Science 334333

    [13]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag 633522

    [14]

    Abdullah M, Koziel S 2022 IEEE Trans. Microw. Theory Techn. 70264

    [15]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P de 2007 IEEE Trans. Antennas Propag 553630

    [16]

    Chen W, Balanis C A, Birtcher C R 2015 IEEE Trans. Antennas Propag 632636

    [17]

    Sang D, Chen Q, Ding L, Guo M, Fu Y 2019 IEEE Trans. Antennas Propag 672604

    [18]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218

    [19]

    Liu X, Gao J, Xu L, Cao X, Zhao Y, Li S 2016 IEEE Antennas Wireless Propag. Lett. 16724

    [20]

    Fu C, Han L, Liu C, Lu X, Sun Z 2021 IEEE Trans. Antennas Propag. 702352

    [21]

    Li W, Huang N, Kang Y, Zou T, Ying Y, Yu J, Zheng J, Qiao L, Li J, Che S 2024 IEICE Electron. Express 2120240246

    [22]

    Qi W j, Yu C, Du J l, Zhao Y j 2022 Int. J. RF Microw. Comput. Aided Eng. 3223306

    [23]

    Koziel S, Abdullah M 2020 IEEE Trans. Microw. Theory Techn. 692028

    [24]

    Tao S, Pan X T, Li M K, Xu S H, Yang F 2020 IEEE J. Emerg. Sel. Top. Circuits Syst. 10114

    [25]

    Yang X Y 2023 M.S. Thesis (Nanjing: Southeast University) (in Chinese) [杨欣雨2023硕士学位论文(南京: 东南大学)]

    [26]

    Yuan F, Mao R Q, Gao M, Chen Q, Fu Q Y 2022 Acta Phys. Sin. 71084102(in Chinese) [袁方, 毛瑞棋, 高冕, 郑月军, 陈强, 付云起2022 71084102]

    [27]

    Yuan F, Wang G M, Xu H X, Cai T, Zou X J, Pang Z H 2017 EEE Antennas Wirel. Propag. Lett. 163188

    [28]

    Han X M, Xu H j, Chang Y P, Lin M, Zhang W Y, Xin W 2020 IEEE Access 8162313

    [29]

    Zhou Y, Cao X Y, Gao J, Li S, Liu X 2017 IEEE Access 531381

    [30]

    Katoch S, Chauhan SS, Kumar V 2021 Multimed. Tools Appl. 808091

    [31]

    Wang D S, Tan D P, Liu L 2018 Soft Comput. 22387

    [32]

    Pan X, Xue L, Lu Y, Sun N 2019 Multimed. Tools Appl. 7529921

    [33]

    Dumoulin V, Visin F 2016 Comput. Sci. 0307285

    [34]

    Xu B, Wang N Y, Chen T Q, Li M 2015 arXiv:1505.00853[cs.LG]

    [35]

    Bjorck N, Gomes C P, Selman B, Weinberger K Q 2018 arXiv:1806.02375[cs.LG]

    [36]

    Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R 2014 J. Mach. Learn. Res. 151929

    [37]

    Dubey S R, Singh S K, Chaudhuri B B 2022 Neurocomputing 50392

    [38]

    Zhou P, Xie X, Lin Z, Yan S 2024 IEEE Trans. Pattern Anal. Mach. Intell. 466486

    [39]

    Shi G, Zhang J, Li H, Wang C 2019 Neural Process. Lett. 5057

    [40]

    Al-Kababji A, Bensaali F, Dakua S P 2022 arXiv:2202.06373[cs.CV]

    [41]

    Yuan F, Xu H X, Jia X Q, Wang G M, Fu Y Q 2020 IEEE Trans. Antennas Propag. 682463

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , doi: 10.7498/aps.73.20231357
    [2] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态.  , doi: 10.7498/aps.73.20231556
    [3] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬.  , doi: 10.7498/aps.72.20222011
    [4] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面.  , doi: 10.7498/aps.72.20230471
    [5] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面.  , doi: 10.7498/aps.71.20221256
    [6] 范辉颖, 罗杰. 非厄密电磁超表面研究进展.  , doi: 10.7498/aps.71.20221706
    [7] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置.  , doi: 10.7498/aps.70.20210681
    [8] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , doi: 10.7498/aps.70.20201495
    [9] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用.  , doi: 10.7498/aps.69.20191225
    [10] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控.  , doi: 10.7498/aps.69.20200453
    [11] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , doi: 10.7498/aps.68.20191055
    [12] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , doi: 10.7498/aps.66.204101
    [13] 范庆斌, 徐挺. 基于电磁超表面的透镜成像技术研究进展.  , doi: 10.7498/aps.66.144208
    [14] 邱天硕, 王甲富, 李勇峰, 王军, 闫明宝, 屈绍波. 基于超表面的无磁性材料环行器.  , doi: 10.7498/aps.65.174101
    [15] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计.  , doi: 10.7498/aps.65.104101
    [16] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜.  , doi: 10.7498/aps.65.074101
    [17] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射.  , doi: 10.7498/aps.64.184101
    [18] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面.  , doi: 10.7498/aps.64.178101
    [19] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面.  , doi: 10.7498/aps.64.124102
    [20] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证.  , doi: 10.7498/aps.63.084103
计量
  • 文章访问数:  121
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-13

/

返回文章
返回
Baidu
map