-
A continuously spacing-tunable dual-wavelength erbium-doped all-fiber laser is proposed and experimentally demonstrated in this paper. The key component of the laser is a novel polarization-maintained multimode-single-mode-multimode fiber interference filter, which is composed of two single-mode-multimode-single-mode fiber mode converters with a polarization-maintaining fiber sandwiched between them. As the polarization-maintaining fiber gives rise to a polarization-dependent phase difference, the fiber filter shows good polarization-dependent characteristics in interference filtering. Based on the mode interference and polarization control, the good wavelength tuning results are obtained in experiment. An optimized length of 1.3 mm for multimode fiber and 1.5 mm for polarization-maintaining fiber are adopted based on the theoretical and experimental analysis. When the phase difference between the lasing in the fast axial direction and that in the slow axial direction is
$ {\text{π}}$ , the peaks and valleys in the transmission spectrum of the fiber filter correspond exactly to the two orthogonal polarization states. In the test, when the pump power is 50 mW, a high-quality dual-wavelength lasing output (at 1544.82 nm and 1545.61 nm) is observed to have side-mode suppression ratio better than 45 dB, the wavelength spacing of 0.8 nm, the peak power difference of less than 1 dB, and the output keeps stable with a small power fluctuation less than 0.7 dB. By adjusting the polarization controller in the ring cavity, two different dual-wavelength outputs can be obtained, which are corresponding to tuning Ⅰ and tuning Ⅱ. In tuning Ⅰ, a dual-wavelength lasing output in a wavelength spacing tuning range of 0−1.2 nm can be obtained within 1 dB peak power difference, correspondingly, 0−1.6 nm tuning range within 10 dB peak power difference. In tuning Ⅱ, with continuously adjusting the polarization controller, the short wavelength signal of the dual-wavelength output stops resonating, and simultaneously another wavelength signal near 1547.8 nm is excited, the switching is continuous and the system remains dual-wavelength output. In tuning Ⅱ, a maximum tuning range of 1.6−3 nm is obtained. In both of tuning Ⅰ and tuning Ⅱ, a 0−3 nm continuously spacing-tunable dual-wavelength output is obtained, all of which keep stable single-polarization operation. The test results show that the polarization state of the dual-wavelength lasing varies with tuning; a maximum polarization extinction ratio of 35 dB is obtained as the two wavelengths are orthogonally polarized.-
Keywords:
- fiber laser /
- multimode-interference fiber filter /
- dual-wavelength /
- continuously tunable
[1] 刘江, 刘晨, 师红星, 王璞 2016 65 194209Google Scholar
Liu J, Liu C, Shi H X, Wang P 2016 Acta Phys. Sin. 65 194209Google Scholar
[2] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉 2015 64 064206Google Scholar
Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206Google Scholar
[3] Ahmad H, Muhammad F D, Chang H P, Thambiratnam K 2014 IEEE J. Sel. Top. Quant. Electron. 20 0902308Google Scholar
[4] Zhu T, Zhang B M, Shi L L, Huang S H, Deng M, Liu J G, Li X 2016 Opt. Express 24 1324Google Scholar
[5] Li Q, Feng S C, Peng W J, Liu P, Feng T, Tan S Y, Yan F P 2012 Microw. Opt. Techn. Let. 54 2074
[6] Li Z, Zhou J, He B, Liu H K, Liu C, Wei Y R, Dong J X, Lou Q H 2012 Chin. Phys. Lett. 29 074203Google Scholar
[7] 冯新焕, 刘艳格, 董孝义 2007 中国激光 34 883Google Scholar
Feng X H, Liu Y G, Dong X Y 2007 Chin. J. Las. 34 883Google Scholar
[8] Ibarra-Escamilla B, Durán-Sánchez M, Álvarez-Tamayo R I, Posada-Ramírez B, Kuzin E A, Das S, Dhar A, Pal M, Paul M C, Kir’yanov A V 2019 Laser Phys. 29 015102Google Scholar
[9] Yin B, Feng S C, Bai Y L, Liu Z B, Liang L J, Liu S, Jian S S 2014 IEEE Photon. Technol. Lett. 26 1227Google Scholar
[10] Han J H 2010 Optik 121 2266Google Scholar
[11] Feng T, Ding D L, Zhao Z W, Su H X, Yan F P, Yao X S 2016 Laser Phys. Lett. 13 105104Google Scholar
[12] Feng T, Ding D L, Zhao Z W, Su H X, Yan F P, Yao X S 2016 Opt. Express 24 19760Google Scholar
[13] Feng T, Yan F P, Liu S, Bai Y, Peng W J, Tan S Y 2014 Laser Phys. Lett. 11 125106Google Scholar
[14] He X Y, Wang D N, Liao C R 2011 J. Lightwave Technol. 29 842
[15] He X Y, Fang X, Liao C R, Wang D N, Sun J Q 2009 Opt. Express 17 21773Google Scholar
[16] Pan S L, Yao J P 2009 Opt. Express 17 5414Google Scholar
[17] Jasim A A, Ahmad H 2017 Opt. Laser Technol. 97 12Google Scholar
[18] Wang F, Xu E M, Dong J J, Zhang X L 2011 Opt. Commun. 284 2337Google Scholar
[19] Yeh C H, Chow C W, Shih F Y, Wang C H, Wu Y F, Chi S 2009 IEEE Photon. Technol. Lett. 21 125Google Scholar
[20] Feng T, Yan F P, Liu S, Peng W J, Tan S Y, Bai Y L, Bai Y 2014 Laser Phys. 24 085101Google Scholar
[21] Choi B K, ParkI G, Byun J H, Kim N, Han S P, Park K H, Seo J K, Lee H K, Jeon M Y 2013 Laser Phys. Lett. 10 125105Google Scholar
[22] Kim R K, Chu S H, Han Y G 2012 IEEE Photon. Technol. Lett. 24 521Google Scholar
[23] Villanueva G E, Pérez-Millán P, Palací J, Cruz J L, Andrés M V, Martí J 2010 IEEE Photon. Technol. Lett. 22 254Google Scholar
[24] Liu J, Shen D Y, Huang H T, Zhao T, Zhang X Q, Fan D Y 2014 Appl. Phys. Express 7 032702Google Scholar
[25] Yan N, Han X F, Chang P F, Huang L G, Gao F, Yu X Y, Zhang W D, Zhang Z, Zhang G Q, Xu J J 2017 Opt. Express 25 27609Google Scholar
-
-
[1] 刘江, 刘晨, 师红星, 王璞 2016 65 194209Google Scholar
Liu J, Liu C, Shi H X, Wang P 2016 Acta Phys. Sin. 65 194209Google Scholar
[2] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉 2015 64 064206Google Scholar
Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206Google Scholar
[3] Ahmad H, Muhammad F D, Chang H P, Thambiratnam K 2014 IEEE J. Sel. Top. Quant. Electron. 20 0902308Google Scholar
[4] Zhu T, Zhang B M, Shi L L, Huang S H, Deng M, Liu J G, Li X 2016 Opt. Express 24 1324Google Scholar
[5] Li Q, Feng S C, Peng W J, Liu P, Feng T, Tan S Y, Yan F P 2012 Microw. Opt. Techn. Let. 54 2074
[6] Li Z, Zhou J, He B, Liu H K, Liu C, Wei Y R, Dong J X, Lou Q H 2012 Chin. Phys. Lett. 29 074203Google Scholar
[7] 冯新焕, 刘艳格, 董孝义 2007 中国激光 34 883Google Scholar
Feng X H, Liu Y G, Dong X Y 2007 Chin. J. Las. 34 883Google Scholar
[8] Ibarra-Escamilla B, Durán-Sánchez M, Álvarez-Tamayo R I, Posada-Ramírez B, Kuzin E A, Das S, Dhar A, Pal M, Paul M C, Kir’yanov A V 2019 Laser Phys. 29 015102Google Scholar
[9] Yin B, Feng S C, Bai Y L, Liu Z B, Liang L J, Liu S, Jian S S 2014 IEEE Photon. Technol. Lett. 26 1227Google Scholar
[10] Han J H 2010 Optik 121 2266Google Scholar
[11] Feng T, Ding D L, Zhao Z W, Su H X, Yan F P, Yao X S 2016 Laser Phys. Lett. 13 105104Google Scholar
[12] Feng T, Ding D L, Zhao Z W, Su H X, Yan F P, Yao X S 2016 Opt. Express 24 19760Google Scholar
[13] Feng T, Yan F P, Liu S, Bai Y, Peng W J, Tan S Y 2014 Laser Phys. Lett. 11 125106Google Scholar
[14] He X Y, Wang D N, Liao C R 2011 J. Lightwave Technol. 29 842
[15] He X Y, Fang X, Liao C R, Wang D N, Sun J Q 2009 Opt. Express 17 21773Google Scholar
[16] Pan S L, Yao J P 2009 Opt. Express 17 5414Google Scholar
[17] Jasim A A, Ahmad H 2017 Opt. Laser Technol. 97 12Google Scholar
[18] Wang F, Xu E M, Dong J J, Zhang X L 2011 Opt. Commun. 284 2337Google Scholar
[19] Yeh C H, Chow C W, Shih F Y, Wang C H, Wu Y F, Chi S 2009 IEEE Photon. Technol. Lett. 21 125Google Scholar
[20] Feng T, Yan F P, Liu S, Peng W J, Tan S Y, Bai Y L, Bai Y 2014 Laser Phys. 24 085101Google Scholar
[21] Choi B K, ParkI G, Byun J H, Kim N, Han S P, Park K H, Seo J K, Lee H K, Jeon M Y 2013 Laser Phys. Lett. 10 125105Google Scholar
[22] Kim R K, Chu S H, Han Y G 2012 IEEE Photon. Technol. Lett. 24 521Google Scholar
[23] Villanueva G E, Pérez-Millán P, Palací J, Cruz J L, Andrés M V, Martí J 2010 IEEE Photon. Technol. Lett. 22 254Google Scholar
[24] Liu J, Shen D Y, Huang H T, Zhao T, Zhang X Q, Fan D Y 2014 Appl. Phys. Express 7 032702Google Scholar
[25] Yan N, Han X F, Chang P F, Huang L G, Gao F, Yu X Y, Zhang W D, Zhang Z, Zhang G Q, Xu J J 2017 Opt. Express 25 27609Google Scholar
Catalog
Metrics
- Abstract views: 8817
- PDF Downloads: 90
- Cited By: 0