Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growth of 4H-SiC recombination-enhancing buffer layer with Ti and N co-doping and improvement of forward voltage stability of PiN diodes

Li Chuan-Gang Ju Tao Zhang Li-Guo Li Yang Zhang Xuan Qin Juan Zhang Bao-Shun Zhang Ze-Hong

Citation:

Growth of 4H-SiC recombination-enhancing buffer layer with Ti and N co-doping and improvement of forward voltage stability of PiN diodes

Li Chuan-Gang, Ju Tao, Zhang Li-Guo, Li Yang, Zhang Xuan, Qin Juan, Zhang Bao-Shun, Zhang Ze-Hong
PDF
HTML
Get Citation
  • “Bipolar degradation” phenomenon has severely impeded the development of 4H-SiC bipolar devices. Their defect mechanism is the expansion of Shockley-type stacking faults from basal plane dislocations under the condition of electron-hole recombination. To suppress the “bipolar degradation” phenomenon, not only do the basal plane dislocations in the 4H-SiC drift layer need eliminating, but also a recombination-enhancing buffer layer is required to prevent the minority carriers of holes from reaching the epilayer/substrate interface where high-density basal plane dislocation segments exist. In this paper, Ti and N co-doped 4H-SiC buffer layers are grown to further shorten the minority carrier lifetime. Firstly, the dependence of Ti doping concentration on TiCl4 flow rate in 4H-SiC epilayers is determined by using single-dilution gas line and double-dilution gas line. Then the p+ layer and p++ layer in PiN diode are obtained by aluminum ion implantation at room temperature and 500 ℃ followed by high temperature activation annealing. Finally, 4H-SiC PiN diodes with a Ti, N co-doped buffer layer are fabricated and tested with a forward current density of 100 A/cm2 for 10 min. Comparing with the PiN diodes without a buffer layer and with a buffer layer only doped with high concentration of nitrogen, the forward voltage drop stability of those diodes with a 2 μm-thick Ti, N co-doped buffer layer (Ti: 3.70 × 1015 cm–3 and N: 1.01 × 1019 cm–3) is greatly improved.
      Corresponding author: Qin Juan, juan_qin@staff.shu.edu.cn ; Zhang Bao-Shun, bszhang2006@sinano.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61804166)
    [1]

    Lendenmann H, Dahlquist F, Johansson N, Soderholm R, Nilsson P A, Bergman J P, Skytt P 2001 Mater. Sci. Forum. 353–356 727Google Scholar

    [2]

    Skowronski M, Liu J Q, Vetter W M, Dudley M, Hallin C, Lendenmann H 2002 J. Appl. Phys. 92 4699Google Scholar

    [3]

    Caldwell J D, Stahlbush R E, Ancona M G, Glembocki O J, Hobart K D 2010 J. Appl. Phys. 108 044503Google Scholar

    [4]

    Maeda K, Hirano R, Sato Y, Tajima M 2012 Mater. Sci. Forum. 725 35Google Scholar

    [5]

    Ha S, Mieszkowski P, Skowronski M, Rowland L B 2002 J. Cryst. Growth 244 257Google Scholar

    [6]

    Tsuchida H, Kamata I, Miyazawa T, Ito M, Zhang X, Nagano M 2018 Mater. Sci. Semicond. Process. 78 2Google Scholar

    [7]

    Tanaka A, Matsuhata H, Kawabata N, Mori D, Inoue K, Ryo M, Fujimoto T, Tawara T, Miyazato M, Miyajima M, Fukuda K, Ohtsuki A, Tomohisa T, Tsuchida H, Yonezawa Y, Kimoto T 2016 J. Appl. Phys. 119 095711Google Scholar

    [8]

    Sumakeris J J, Bergman P, Das M K, Hallin C, Hull B A, Janzen E, Lendenmann H, O’Loughlin M J, Paisley M J, Ha S Y, Skowronski M, Palmour J W, Carter Jr C H 2006 Mater. Sci. Forum. 527-529 141Google Scholar

    [9]

    Hori T, Danno K, Kimoto T 2007 J. Cryst. Growth. 306 297Google Scholar

    [10]

    Stahlbush R E, VanMil B L, Myers Ward R L, Lew K K, Gaskill D K, Eddy Jr C R 2009 Appl. Phys. Lett. 94 041916Google Scholar

    [11]

    Mahadik N A, Stahlbush R E, Ancona M G, Lmhoff E A, Hobart K D, Myers-Ward R L, Eddy Jr C R, Gaskill D K, Kub F J 2012 Appl. Phys. Lett. 100 042102Google Scholar

    [12]

    Tawara T, Miyazawa T, Ryo M, Miyazato M, Fujimoto T, Takenaka K, Matsunaga S, Miyajima M, Otsuki A, Yonezawa Y, Kato T, Okumura H, Kimoto T, Tsuchida H 2016 J. Appl. Phys. 120 115101Google Scholar

    [13]

    Miyazawa T, Tawara T, Tsuchida H 2017 Mater. Sci. Forum. 897 67Google Scholar

    [14]

    Miyazawa T, Tawara T, Takanashi R, Tsuchida H 2016 Appl. Phys. Express 9 111301Google Scholar

    [15]

    Murata K, Tawara T, Yang A, Takanashi R, Miyazawa T, Tsuchida H 2019 J. Appl. Phys. 126 045711Google Scholar

    [16]

    Tawara T, Miyazawa T, Ryo M, Miyazato M, Fujimoto T, Takenaka K, Matsunaga S, Miyajima M, Otsuki A, Yonezawa Y, Kato T, Okumura H, Kimoto T, Tsuchida H 2017 Mater. Sci. Forum. 897 419Google Scholar

    [17]

    Dalibor T, Pensl G, Matsunami H, Kimoto T, Choyke W J, Schoner A, Nordell N 1997 Phys. Status Solidi A 162 199Google Scholar

    [18]

    Hobgood H M, Glass R C, Augustine G, Hopkins R H, Jenny J, Skowronski M, Mitchel W C, Roth M 1995 Appl. Phys. Lett. 66 1364Google Scholar

    [19]

    Dalibor T, Pensl G, Nordell N, Schoner A 1997 Phys. Rev. B 55 13618Google Scholar

    [20]

    Maier K, Muller H D, Schneider J 1992 Mater. Sci. Forum. 83–87 1183Google Scholar

  • 图 1  (a) 4H-SiC CVD外延设备示意图; Ti掺杂(b)单稀释和(c)双稀释管路示意图

    Figure 1.  Schematics of (a) the CVD reactor for 4H-SiC epitaxial growth, (b) single-dilution pipe and (c) double-dilution pipe of TiCl4 gas delivery.

    图 2  (a) 含Ti, N共掺杂缓冲层结构的SiC PiN二极管结构示意图; (b) TRIM模拟的Al注入浓度箱型分布

    Figure 2.  (a) Schematic of the cross-sectional structure of a 4H-SiC PiN diode with Ti and N co-doped buffer layer; (b) box-profile of Al concentration by TRIM simulation.

    图 3  Ti掺杂浓度随TiCl4摩尔流量的变化

    Figure 3.  Relationship between Ti doping concentration and TiCl4 mole flow rate.

    图 4  Ti, N共掺杂4H-SiC缓冲层表面形貌(Nd = 1.01 × 1019 cm–3) (a) Ti掺杂浓度为3.70 × 1015 cm–3; (b) Ti掺杂浓度为3.71 × 1016 cm–3

    Figure 4.  Optical microscope images of the Ti and N co-doped 4H-SiC buffer layer surface with Ti doping concentrations of (a) 3.70 × 1015 cm–3 and (b) 3.71 × 1016 cm–3. Both with Nd = 1.01 × 1019 cm–3.

    图 5  无缓冲层、仅含高浓度N掺杂缓冲层、含Ti和N共掺杂缓冲层的4H-SiC PiN二极管的正向特性 (a), (c), (e)在100 A/cm2电流密度下10 min, 正向压降随时间的变化; (b), (d), (f)正向偏置前后正向电流-电压曲线的对比

    Figure 5.  (a), (c), (e) Change of forward voltage drop vs. time and (b), (d), (f) comparison between the forward I-V characteristics before and after being biased for 10 min at a current density of 100 A/cm2 for 4H-SiC PiN diodes without a buffer layer, with a highly N-doped buffer layer, and with a Ti and N co-doped buffer layer.

    表 1  Ti掺杂实验参数

    Table 1.  Experimental parameters of Ti doping.

    稀释管路MFC1MFC2MFC3TiCl4掺杂摩尔流量
    /sccm/slm/sccm/(mol·min–1)
    单稀释1.259.8007.25 × 10–7
    59.8002.90 × 10–6
    509.8002.90 × 10–5
    双稀释500.10058.95 × 10–7
    500.07551.14 × 10–6
    500.04051.62 × 10–6
    DownLoad: CSV
    Baidu
  • [1]

    Lendenmann H, Dahlquist F, Johansson N, Soderholm R, Nilsson P A, Bergman J P, Skytt P 2001 Mater. Sci. Forum. 353–356 727Google Scholar

    [2]

    Skowronski M, Liu J Q, Vetter W M, Dudley M, Hallin C, Lendenmann H 2002 J. Appl. Phys. 92 4699Google Scholar

    [3]

    Caldwell J D, Stahlbush R E, Ancona M G, Glembocki O J, Hobart K D 2010 J. Appl. Phys. 108 044503Google Scholar

    [4]

    Maeda K, Hirano R, Sato Y, Tajima M 2012 Mater. Sci. Forum. 725 35Google Scholar

    [5]

    Ha S, Mieszkowski P, Skowronski M, Rowland L B 2002 J. Cryst. Growth 244 257Google Scholar

    [6]

    Tsuchida H, Kamata I, Miyazawa T, Ito M, Zhang X, Nagano M 2018 Mater. Sci. Semicond. Process. 78 2Google Scholar

    [7]

    Tanaka A, Matsuhata H, Kawabata N, Mori D, Inoue K, Ryo M, Fujimoto T, Tawara T, Miyazato M, Miyajima M, Fukuda K, Ohtsuki A, Tomohisa T, Tsuchida H, Yonezawa Y, Kimoto T 2016 J. Appl. Phys. 119 095711Google Scholar

    [8]

    Sumakeris J J, Bergman P, Das M K, Hallin C, Hull B A, Janzen E, Lendenmann H, O’Loughlin M J, Paisley M J, Ha S Y, Skowronski M, Palmour J W, Carter Jr C H 2006 Mater. Sci. Forum. 527-529 141Google Scholar

    [9]

    Hori T, Danno K, Kimoto T 2007 J. Cryst. Growth. 306 297Google Scholar

    [10]

    Stahlbush R E, VanMil B L, Myers Ward R L, Lew K K, Gaskill D K, Eddy Jr C R 2009 Appl. Phys. Lett. 94 041916Google Scholar

    [11]

    Mahadik N A, Stahlbush R E, Ancona M G, Lmhoff E A, Hobart K D, Myers-Ward R L, Eddy Jr C R, Gaskill D K, Kub F J 2012 Appl. Phys. Lett. 100 042102Google Scholar

    [12]

    Tawara T, Miyazawa T, Ryo M, Miyazato M, Fujimoto T, Takenaka K, Matsunaga S, Miyajima M, Otsuki A, Yonezawa Y, Kato T, Okumura H, Kimoto T, Tsuchida H 2016 J. Appl. Phys. 120 115101Google Scholar

    [13]

    Miyazawa T, Tawara T, Tsuchida H 2017 Mater. Sci. Forum. 897 67Google Scholar

    [14]

    Miyazawa T, Tawara T, Takanashi R, Tsuchida H 2016 Appl. Phys. Express 9 111301Google Scholar

    [15]

    Murata K, Tawara T, Yang A, Takanashi R, Miyazawa T, Tsuchida H 2019 J. Appl. Phys. 126 045711Google Scholar

    [16]

    Tawara T, Miyazawa T, Ryo M, Miyazato M, Fujimoto T, Takenaka K, Matsunaga S, Miyajima M, Otsuki A, Yonezawa Y, Kato T, Okumura H, Kimoto T, Tsuchida H 2017 Mater. Sci. Forum. 897 419Google Scholar

    [17]

    Dalibor T, Pensl G, Matsunami H, Kimoto T, Choyke W J, Schoner A, Nordell N 1997 Phys. Status Solidi A 162 199Google Scholar

    [18]

    Hobgood H M, Glass R C, Augustine G, Hopkins R H, Jenny J, Skowronski M, Mitchel W C, Roth M 1995 Appl. Phys. Lett. 66 1364Google Scholar

    [19]

    Dalibor T, Pensl G, Nordell N, Schoner A 1997 Phys. Rev. B 55 13618Google Scholar

    [20]

    Maier K, Muller H D, Schneider J 1992 Mater. Sci. Forum. 83–87 1183Google Scholar

  • [1] Chang Shuai-Jun, Ma Hai-Lun, Li Hao, Ou Shu-Ji, Guo Jian-Fei, Zhong Ming-Hao, Liu Li. A novel 4H-SiC ESD protection device with improved robustness. Acta Physica Sinica, 2022, 71(19): 198501. doi: 10.7498/aps.71.20220879
    [2] Du Yuan-Yuan, Zhang Chun-Lei, Cao Xue-Lei. -ray detector based on n-type 4H-SiC Schottky barrier diode. Acta Physica Sinica, 2016, 65(20): 207301. doi: 10.7498/aps.65.207301
    [3] Jia Ren-Xu, Liu Si-Cheng, Xu Han-Di, Chen Zheng-Tao, Tang Xiao-Yan, Yang Fei, Niu Ying-Xi. Study on Grove model of the 4H-SiC homoepitaxial growth. Acta Physica Sinica, 2014, 63(3): 037102. doi: 10.7498/aps.63.037102
    [4] Qin Yu-Xiang, Liu Mei, Hua De-Yan. First-principles study of the electronic structure and NO2-sensing properties of Ti-doped W18O49 nanowire. Acta Physica Sinica, 2014, 63(20): 207101. doi: 10.7498/aps.63.207101
    [5] Song Kun, Chai Chang-Chun, Yang Yin-Tang, Zhang Xian-Jun, Chen Bin. Improvement in breakdown characteristics of 4H-SiC MESFET with a gate-drain surface epi-layer and optimization of the structure. Acta Physica Sinica, 2012, 61(2): 027202. doi: 10.7498/aps.61.027202
    [6] Tang Xiao-Yan, Dai Xiao-Wei, Zhang Yu-Ming, Zhang Yi-Men. Study of the effect of lithography deviation on 4H-SiC floating junction junction barrier Schottky diode. Acta Physica Sinica, 2012, 61(8): 088501. doi: 10.7498/aps.61.088501
    [7] Zhang Lin, Xiao Jian, Qiu Yang-Zhang, Cheng Hong-Liang. Radition effect on Ti/4H-SiC SBD of gamma-ray,electrons and neutrons. Acta Physica Sinica, 2011, 60(5): 056106. doi: 10.7498/aps.60.056106
    [8] Miao Rui-Xia, Zhang Yu-Ming, Tang Xiao-Yan, Zhang Yi-Men. Investigation of luminescence properties of basal plane dislocations in 4H-SiC. Acta Physica Sinica, 2011, 60(3): 037808. doi: 10.7498/aps.60.037808
    [9] Cheng Ping, Zhang Yu-Ming, Zhang Yi-Men. Effect of annealing treatment on the 386 nm and 388 nm emission peaks in unintentionally doped 4H-SiC epilayer. Acta Physica Sinica, 2011, 60(1): 017103. doi: 10.7498/aps.60.017103
    [10] Cheng Ping, Zhang Yu-Ming, Zhang Yi-Men, Wang Yue-Hu, Guo Hui. Stability of the intrinsic defects in unintentionally doped 4H-SiC epitaxial layer. Acta Physica Sinica, 2010, 59(5): 3542-3546. doi: 10.7498/aps.59.3542
    [11] Zhang Lin, Han Chao, Ma Yong-Ji, Zhang Yi-Men, Zhang Yu-Ming. Gamma-ray radiation effect on Ni/4H-SiC SBD. Acta Physica Sinica, 2009, 58(4): 2737-2741. doi: 10.7498/aps.58.2737
    [12] Lü Hong-Liang, Zhang Yi-Men, Zhang Yu-Ming, Che Yong, Wang Yue-Hu, Chen Liang. The extraction method for trap parameters in 4H-SiC MESFETs. Acta Physica Sinica, 2008, 57(5): 2871-2874. doi: 10.7498/aps.57.2871
    [13] Jia Ren-Xu, Zhang Yi-Men, Zhang Yu-Ming, Wang Yue-Hu. Nitrogen doped 4H-SiC homoepitaxial layers grown by CVD. Acta Physica Sinica, 2008, 57(10): 6649-6653. doi: 10.7498/aps.57.6649
    [14] Xu Jing-Ping, Li Chun-Xia, Wu Hai-Ping. Analyses on high-temperature electrical properties of 4H-SiC n-MOSFET. Acta Physica Sinica, 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [15] Lin Hong-Feng, Xie Er-Qing, Ma Zi-Wei, Zhang Jun, Peng Ai-Hua, He De-Yan. Study of 3C-SiC and 4H-SiC films deposited using RF sputtering method. Acta Physica Sinica, 2004, 53(8): 2780-2785. doi: 10.7498/aps.53.2780
    [16] Shao Jun. Optimal photoluminescence spectrum from Ti-doped ZnTe. Acta Physica Sinica, 2003, 52(7): 1743-1747. doi: 10.7498/aps.52.1743
    [17] Lü Hong-Liang, Zhang Yi-Men, Zhang Yu-Ming. The simulation study of the tunneling effect in the breakdown of 4H-SiC pn junc tion diode. Acta Physica Sinica, 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
    [18] Zhang Hong-Tao, Xu Chong-Yang, Zhou Xue-Cheng, Wang Chang-An, Zhao Bo-Fang, Zhou Xue-Mei, Zeng Xiang-Bin. . Acta Physica Sinica, 2002, 51(2): 304-309. doi: 10.7498/aps.51.304
    [19] Yang Lin-An, Zhang Yi-Men, Gong Ren-Xi, Zhang Yu-Ming. . Acta Physica Sinica, 2002, 51(1): 148-152. doi: 10.7498/aps.51.148
    [20] Xu Chang-Fa, Yang Yin-Tang, Liu Li. . Acta Physica Sinica, 2002, 51(5): 1113-1117. doi: 10.7498/aps.51.1113
Metrics
  • Abstract views:  7167
  • PDF Downloads:  125
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2020
  • Accepted Date:  09 September 2020
  • Available Online:  18 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回
Baidu
map