搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti掺杂W18O49纳米线的电子结构与NO2敏感性能的第一性原理研究

秦玉香 刘梅 化得燕

引用本文:
Citation:

Ti掺杂W18O49纳米线的电子结构与NO2敏感性能的第一性原理研究

秦玉香, 刘梅, 化得燕

First-principles study of the electronic structure and NO2-sensing properties of Ti-doped W18O49 nanowire

Qin Yu-Xiang, Liu Mei, Hua De-Yan
PDF
导出引用
  • 采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法,通过理论建模,研究了Ti掺杂的非化学计量比W18O49纳米线的几何与能带结构以及电子态密度,并通过进一步计算NO2/Ti-W18O49纳米线吸附体系的吸附能、电荷差分密度与电荷布居,分析了Ti掺杂W18O49纳米线的气体吸附与敏感性能. 计算发现,Ti掺杂改变了W18O49纳米线的表面电子结构,引入的额外的杂质态密度和费米能级附近能带结构的显著变化,使掺杂纳米线带隙与费米能级位置改变,纳米线导电性能增强. 吸附在W18O49纳米线表面的NO2作为电子受体从纳米线导带夺取电子,导致纳米线电导降低,产生气体敏感响应. 与纯相W18O49纳米线相比,NO2/Ti-W18O49纳米线吸附体系内部存在更多的电子转移,从理论上定量地反映了Ti掺杂对改善W18O49纳米线气敏灵敏度的有效性. 对Ti掺杂纳米线不同气体吸附体系电子布居的进一步计算表明,Ti掺杂纳米线对NO2气体具有良好的灵敏度和选择性.
    The geometry and band structures as well as the density of states of Ti-doped nonstoichiometric W18O49 nanowire are studied by employing the ab-initio plane-wave ultra-soft pseudo potential technique based on the density functional theory. Meanwhile, the adsorption and NO2-sensing properties of the doped nanowire are analyzed by further calculating the adsorption energy, planar averaged charge density difference and atomic Mulliken charge population of the NO2/Ti-W18O49 nanowire adsorption system. The results reveal that Ti-doping modifies the electronic structure and then the gas sensitivity of W18O49 nanowire obviously. After Ti-doping, new electronic states are introduced and the band structure near Fermi level (EF) is changed obviously, resulting in the variation of the band gap and EF position and then the increase of electronic conductivity. The adsorbed NO2 molecule acts as a charge accepter to extract electrons from the conduction band of W18O49 nanowire, causing the gas-sensing response due to the conductivity change of the nanowire. NO2 adsorption on Ti-doped W18O49 nanowire can cause more electrons to transfer from nanowire to NO2 molecule than the case on pure W18O49 nanowire, theoretically suggesting the validity of Ti-doping that can improve the sensitivity of W18O49 nanowire. The population calculations on different gas molecules adsorbed on Ti-doped W18O49 nanowire further indicate the much good sensitivity and selectivity of the doped nanowire to NO2 gas.
    • 基金项目: 国家自然科学基金(批准号:61274074,61271079)和天津市自然科学基金(批准号:11JCZDJC15300)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation (Grant Nos. 61274074, 61271079) and the Tianjin Natural Science Foundation, China (Grant No. 11JCZDJC15300).
    [1]

    Baeck S H, Choi K S, Jaramillo T F, Stucky G D, McFarland E W 2003 Adv. Mater. 15 1269

    [2]

    Li X L, Lou T J, Sun X M, Li Y D 2004 Inorg. Chem. 43 5442

    [3]

    Santato C, Odziemkowski M, Ulmann M, Augustynski J 2001 J. Am. Chem. Soc. 123 10639

    [4]

    Rout C S, Ganesh K, Govindaraj A, Rao C N R 2006 Appl. Phys. A: Mater. 85 241

    [5]

    Gerlitz R A, Benkstein K D, Lahr D L, Hertz J L, Montgomery C B, Bonevich J E, Semancik S, Tarlov M J 2009 Sens. Actuators B 136 257

    [6]

    Qin Y X, Li X, Wang F, Hu M 2011 J. Alloy Compd. 509 8401

    [7]

    Kukkola J, Mohl M, Leino A R, Möklin J, Halonen N, Shchukarev A, Konya Z, Jantunen H, Kordas K 2013 Sens. Actuat. B 186 90

    [8]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [9]

    Qin Y X, Sun X B, Li X, Hu M 2012 Sens. Actuators B 162 224

    [10]

    Shen Y B, Yamazaki T, Liu Z F, Meng D, Kikuta T, Nakatani N, Saito M, Mori M 2009 Sens. Actuat. B 135 524

    [11]

    Kim Y S, Ha S C, Kim K, Yang H, Choi S Y, Kim Y T, Park J T, Lee C H, Choi J, Paek J, Lee K 2005 Appl. Phys. Lett. 86 213105

    [12]

    Hu M, Zhang J, Wang W D, Qin Y X 2011 Chin. Phys. B 20 082101

    [13]

    Shim Y S, Zhang L H, Kim D H, Kim Y H, Choi Y R, Nahm S H, Kang C Y, Lee W Y, Jang H W 2014 Sens. Actuat. B 198 294

    [14]

    Oison V, Saadi L, Lambert-Mauriat C, Hayn R 2011 Sens. Actuat. B 160 505

    [15]

    Liu F, Guo T Y, Xu Z, Gan H B, Li L F, Chen J, Deng S Z, Xu N S, Golberg D, Bando Y 2013 Mater. Chem. C 1 3217

    [16]

    Qin Y X, Hu M, Zhang J 2010 Sens. Actuat. B 150 339

    [17]

    Chen C H, Wang S J, Ko R M, Kuo Y C, Uang K M, Chen T M, Liou B W, Tsai H Y 2006 Nanotechnology 17 217

    [18]

    Hu W B, Zhao Y M, Liu Z L, Dunnill C W, Gregory D H, Zhu Y Q 2008 Chem. Mater. 20 5657

    [19]

    Huang R, Zhu J, Yu R 2009 Chin. Phys. B 18 3024

    [20]

    Sun S B, Zhao Y M, Xia Y D, Zou Z D, Min G H, Zhu Y Q 2008 Nanotechnology 19 305709

    [21]

    Li Y F, Zhou Z, Chen Y S, Chen Z F 2009 J. Chem. Phys. 130 204706

    [22]

    Li Z B, Wang X, Jia L C, Chi B 2014 J. Mol. Struct. 1061 160

    [23]

    Zhang M, Shi J J 2014 Chin. Phys. B 23 017301

    [24]

    Ji Y J, Du Y J, Wang M S 2013 Chin. Phys. B 22 117103

    [25]

    Zhang P, Liu Y, Yu H, Han S H, Lu Y B, Lu M S, Cong W Y 2014 Chin. Phys. B 23 026103

    [26]

    Hou Q Y, Dong H Y, Ying C, Ma W 2012 Acta Phys. Sin. 61 167102 (in Chinese) [侯清玉, 董红英, 迎春, 马文 2012 61 167102]

    [27]

    Hou Q Y, Zhao C W, Jin Y J, Guan Y Q, Lin L, Li J J 2010 Acta Phys. Sin. 59 4156 (in Chinese) [侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军 2010 59 4156]

    [28]

    Hariharan V, Parthibavarman M, Sekar C 2011 J. Alloys Compd. 509 4788

    [29]

    Vo T, Williamson A J, Galli G 2006 Phys. Rev. B 74 045116

    [30]

    Jin L, Lou S Y, Kong D G, Li Y C, Du Z L 2006 Acta Phys. Sin. 55 4809 (in Chinese) [靳联, 娄世云, 孔德国, 李藴才, 杜祖亮 2006 55 4809]

    [31]

    Zhou Z, Zhao J J, Chen Y S, Schleyer P V R, Chen Z F 2007 Nanotechnology 18 424023

    [32]

    Wanbayor R, Ruangpornvisuti V 2012 Appl. Surf. Sci. 258 3298

    [33]

    Breedon M, Spencer M J S, Yarovsky I 2010 J. Phys. Chem. C 114 16603

  • [1]

    Baeck S H, Choi K S, Jaramillo T F, Stucky G D, McFarland E W 2003 Adv. Mater. 15 1269

    [2]

    Li X L, Lou T J, Sun X M, Li Y D 2004 Inorg. Chem. 43 5442

    [3]

    Santato C, Odziemkowski M, Ulmann M, Augustynski J 2001 J. Am. Chem. Soc. 123 10639

    [4]

    Rout C S, Ganesh K, Govindaraj A, Rao C N R 2006 Appl. Phys. A: Mater. 85 241

    [5]

    Gerlitz R A, Benkstein K D, Lahr D L, Hertz J L, Montgomery C B, Bonevich J E, Semancik S, Tarlov M J 2009 Sens. Actuators B 136 257

    [6]

    Qin Y X, Li X, Wang F, Hu M 2011 J. Alloy Compd. 509 8401

    [7]

    Kukkola J, Mohl M, Leino A R, Möklin J, Halonen N, Shchukarev A, Konya Z, Jantunen H, Kordas K 2013 Sens. Actuat. B 186 90

    [8]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [9]

    Qin Y X, Sun X B, Li X, Hu M 2012 Sens. Actuators B 162 224

    [10]

    Shen Y B, Yamazaki T, Liu Z F, Meng D, Kikuta T, Nakatani N, Saito M, Mori M 2009 Sens. Actuat. B 135 524

    [11]

    Kim Y S, Ha S C, Kim K, Yang H, Choi S Y, Kim Y T, Park J T, Lee C H, Choi J, Paek J, Lee K 2005 Appl. Phys. Lett. 86 213105

    [12]

    Hu M, Zhang J, Wang W D, Qin Y X 2011 Chin. Phys. B 20 082101

    [13]

    Shim Y S, Zhang L H, Kim D H, Kim Y H, Choi Y R, Nahm S H, Kang C Y, Lee W Y, Jang H W 2014 Sens. Actuat. B 198 294

    [14]

    Oison V, Saadi L, Lambert-Mauriat C, Hayn R 2011 Sens. Actuat. B 160 505

    [15]

    Liu F, Guo T Y, Xu Z, Gan H B, Li L F, Chen J, Deng S Z, Xu N S, Golberg D, Bando Y 2013 Mater. Chem. C 1 3217

    [16]

    Qin Y X, Hu M, Zhang J 2010 Sens. Actuat. B 150 339

    [17]

    Chen C H, Wang S J, Ko R M, Kuo Y C, Uang K M, Chen T M, Liou B W, Tsai H Y 2006 Nanotechnology 17 217

    [18]

    Hu W B, Zhao Y M, Liu Z L, Dunnill C W, Gregory D H, Zhu Y Q 2008 Chem. Mater. 20 5657

    [19]

    Huang R, Zhu J, Yu R 2009 Chin. Phys. B 18 3024

    [20]

    Sun S B, Zhao Y M, Xia Y D, Zou Z D, Min G H, Zhu Y Q 2008 Nanotechnology 19 305709

    [21]

    Li Y F, Zhou Z, Chen Y S, Chen Z F 2009 J. Chem. Phys. 130 204706

    [22]

    Li Z B, Wang X, Jia L C, Chi B 2014 J. Mol. Struct. 1061 160

    [23]

    Zhang M, Shi J J 2014 Chin. Phys. B 23 017301

    [24]

    Ji Y J, Du Y J, Wang M S 2013 Chin. Phys. B 22 117103

    [25]

    Zhang P, Liu Y, Yu H, Han S H, Lu Y B, Lu M S, Cong W Y 2014 Chin. Phys. B 23 026103

    [26]

    Hou Q Y, Dong H Y, Ying C, Ma W 2012 Acta Phys. Sin. 61 167102 (in Chinese) [侯清玉, 董红英, 迎春, 马文 2012 61 167102]

    [27]

    Hou Q Y, Zhao C W, Jin Y J, Guan Y Q, Lin L, Li J J 2010 Acta Phys. Sin. 59 4156 (in Chinese) [侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军 2010 59 4156]

    [28]

    Hariharan V, Parthibavarman M, Sekar C 2011 J. Alloys Compd. 509 4788

    [29]

    Vo T, Williamson A J, Galli G 2006 Phys. Rev. B 74 045116

    [30]

    Jin L, Lou S Y, Kong D G, Li Y C, Du Z L 2006 Acta Phys. Sin. 55 4809 (in Chinese) [靳联, 娄世云, 孔德国, 李藴才, 杜祖亮 2006 55 4809]

    [31]

    Zhou Z, Zhao J J, Chen Y S, Schleyer P V R, Chen Z F 2007 Nanotechnology 18 424023

    [32]

    Wanbayor R, Ruangpornvisuti V 2012 Appl. Surf. Sci. 258 3298

    [33]

    Breedon M, Spencer M J S, Yarovsky I 2010 J. Phys. Chem. C 114 16603

  • [1] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] 张树东, 王传航, 唐伟, 孙阳, 孙宁泽, 孙召玉, 徐慧. 2, 3-二呋喃基马来酸酐光致分子开关机理研究.  , 2021, 70(16): 163101. doi: 10.7498/aps.70.20202039
    [3] 李传纲, 鞠涛, 张立国, 李杨, 张璇, 秦娟, 张宝顺, 张泽洪. Ti, N共掺杂4H-SiC复合增强缓冲层生长及其对PiN二极管正向性能稳定性的改善.  , 2021, 70(3): 037102. doi: 10.7498/aps.70.20200921
    [4] 冯秋菊, 石博, 李昀铮, 王德煜, 高冲, 董增杰, 解金珠, 梁红伟. 单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能.  , 2020, 69(3): 038102. doi: 10.7498/aps.69.20191530
    [5] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算.  , 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [6] 宋庆功, 赵俊普, 顾威风, 甄丹丹, 郭艳蕊, 李泽朋. 基于密度泛函理论的La掺杂-TiAl体系结构延性与电子性质.  , 2017, 66(6): 066103. doi: 10.7498/aps.66.066103
    [7] 张玮祎, 胡明, 刘星, 李娜, 闫文君. 硅纳米线/氧化钒纳米棒复合材料的制备与气敏性能研究.  , 2016, 65(9): 090701. doi: 10.7498/aps.65.090701
    [8] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究.  , 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [9] 邢兰俊, 常永勤, 邵长景, 王琳, 龙毅. Sn掺杂ZnO薄膜的室温气敏性能及其气敏机理.  , 2016, 65(9): 097302. doi: 10.7498/aps.65.097302
    [10] 胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋. 微流控技术制备ZnO纳米线阵列及其气敏特性.  , 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [11] 王艳丽, 苏克和, 颜红侠, 王欣. C在不同位置掺杂(n,n)型BN纳米管的密度泛函研究.  , 2014, 63(4): 046101. doi: 10.7498/aps.63.046101
    [12] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO.  , 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [13] 秦玉香, 刘凯轩, 刘长雨, 孙学斌. 钒掺杂W18O49纳米线的室温p型电导与NO2敏感性能.  , 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [14] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究.  , 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [15] 李明阳, 于明朗, 苏庆, 刘雪芹, 谢二庆, 张晓倩. 生长在Si基底上VOX纳米管形貌的时间影响因子及其气敏性初探.  , 2012, 61(23): 236101. doi: 10.7498/aps.61.236101
    [16] 张建东, 杨春, 陈元涛, 张变霞, 邵文英. 金原子掺杂的碳纳米管吸附CO气体的密度泛函理论研究.  , 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [17] 陈宣, 彭霞, 邓开明, 肖传云, 胡凤兰, 谭伟石. 笼状Au20内掺M13(M=Fe,Ti)团簇磁性的密度泛函计算研究.  , 2009, 58(8): 5370-5375. doi: 10.7498/aps.58.5370
    [18] 杨剑, 王倪颖, 朱冬玖, 陈宣, 邓开明, 肖传云. MPb10(M=Ti,V,Cr,Cu,Pd)几何结构和磁性的密度泛函计算研究.  , 2009, 58(5): 3112-3117. doi: 10.7498/aps.58.3112
    [19] 盛 勇, 毛华平, 涂铭旌. TinMg (n=1—10)掺杂团簇的密度泛函研究.  , 2008, 57(7): 4153-4158. doi: 10.7498/aps.57.4153
    [20] 邵 军. Ti掺杂ZnTe体材料的优化光致发光光谱.  , 2003, 52(7): 1743-1747. doi: 10.7498/aps.52.1743
计量
  • 文章访问数:  6089
  • PDF下载量:  866
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-11
  • 修回日期:  2014-06-11
  • 刊出日期:  2014-10-05

/

返回文章
返回
Baidu
map