搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4H-SiC同质外延生长Grove模型研究

贾仁需 刘思成 许翰迪 陈峥涛 汤晓燕 杨霏 钮应喜

引用本文:
Citation:

4H-SiC同质外延生长Grove模型研究

贾仁需, 刘思成, 许翰迪, 陈峥涛, 汤晓燕, 杨霏, 钮应喜

Study on Grove model of the 4H-SiC homoepitaxial growth

Jia Ren-Xu, Liu Si-Cheng, Xu Han-Di, Chen Zheng-Tao, Tang Xiao-Yan, Yang Fei, Niu Ying-Xi
PDF
导出引用
  • 本文通过对4H-SiC同质外延化学反应和生长条件的分析,建立了4H-SiC同质外延生长的Grove模型,并结合实验结果进行了分析和验证.通过理论分析和实验验证,得到了外延中氢气载气流量和生长温度对4H-SiC同质外延生长速率的影响.研究表明:外延生长速率在衬底直径上为碗型分布,中心的生长速率略低于边缘的生长速率;随着载气流量的增大,生长速率由输运控制转变为反应速率控制,生长速率先增大而后逐渐降低;载气流量的增加,会使高温区会发生漂移,生长速率的理论值和实验出现一定的偏移;随着外延生长温度的升高,化学反应速率和气相转移系数都会增大,提高了外延速率;温度对外延反应速率的影响远大于对生长质量输运的影响,当温度过分升高后,外延生长会进入质量控制区;但过高的生长温度导致源气体在生长区边缘发生反应,生成固体粒子,使实际参与外延生长的粒子数减少,降低了生长速率,且固体粒子会有一定的概率落在外延层上,严重影响外延层的质量.通过调节氢气流量,衬底旋转速度和生长温度,可以有效的控制外延的生长速度和厚度的均匀性.
    In this paper, A Grove model on the homoepitaxial growth of 4H-SiC is presented, based on the structure and growth conditions of CVD system. According to the model analysis, the growth rate of 4H-SiC is quiet influenced by carrier gas flow rate and temperature, which is verified by experiments. Growth rate along the substrate has a bowl-shaped distribution, and the growth rate on the center is slightly lower than on the edge. As the carrier gas flow rate increases, the growth rate controlled by the transport changes into the reaction rate control, the growth rate first increases and then decreases. The position of highest temperature in the actor will be drifted with the carrier gas flow increasing. The reaction rate and the mass transport coefficient increase with the rise of growth temperature, which can cause the increase of growth rate. But the effect of temperature on reaction rate is much greater than on the mass transport. When the temperature rises excessively, the epitaxial growth will be determined by the mass transport. But the high reaction temperature results in forming some particles at the edge of reactor, which can reduce the growth rate, and the particles will have a chance to fall on the epitaxial layer, thus seriously affecting the quality of the epitaxial layer. All the above shows that the growth rate and thickness uniformity can effectively controlled by adjusting the flow rate of hydrogen, the rotational speed of the substrate and the growth temperature.
    • 基金项目: 国家自然科学基金(批准号:61006008,61274079)和国家电网公司科技项目(批准号:SGRI-WD-71-13-004)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006008, 61274079), and the Science Project of State Grid (Grant No. SGRI-WD-71-13-004).
    [1]

    Jawedul H, Henry A, Bergman J P, Janzen E 2006 Thin solid film 515 460

    [2]

    Jia R X, Zhang Y M, Zhang Y M 2008 Acta Phys. Sin. 57 6649 (in Chinese) [贾仁需, 张义门, 张玉明 2008 57 6649]

    [3]

    www.cree.com

    [4]

    Hirokazu F, Hideki N, Masaki K 2012 Appl. Phys. Lett. 100 242102

    [5]

    Jia R X, Zhang Y M, Zhang Y M 2012 Journal Wuhan University of Technology Materials Science Edition 27 415

    [6]

    Jia R X, Zhang Y M, Zhang Y M 2008 Acta Phys. Sin. 57 4456 (in Chinese) [贾仁需, 张义门, 张玉明 2008 57 4456]

    [7]

    Bin C, Matsuhata H, Sekiguchi T, Kinoshita A, Ichinoseki K, Okumura H 2012 Appl. Phys. Lett. 100 132108

    [8]

    Bergman J P, Lendenmann H, Nilsson P A, Lindefeit U, Skytt P 2001 Mater. Sci. Forum 299 353

    [9]

    Lofgren P M, Ji W, Hallin C Gu C Y 2000 Electoro. Soc 147 164

    [10]

    Veneroni A, Omarini F Moscatelli D, Maurizio M, Stefano L, Marco M, Giuseppe P, Giuseppe A 2005 J. Cryst. Growth 275 295

    [11]

    Meziere J, Ucar M, Blanquet E, Pons M, Ferret P, Cioccio L D 2004 J. Cryst. Growth. 267 436

    [12]

    Young J L, Doo J Ch, Sung S K, Hong L L, Hae D K 2004 Surface and Coatings Technology 177 415

    [13]

    Govindhan D, Michael D, Yi C, Balaji R, Wu B, Zhang H 2006 J. Cryst. Growth 287 344

  • [1]

    Jawedul H, Henry A, Bergman J P, Janzen E 2006 Thin solid film 515 460

    [2]

    Jia R X, Zhang Y M, Zhang Y M 2008 Acta Phys. Sin. 57 6649 (in Chinese) [贾仁需, 张义门, 张玉明 2008 57 6649]

    [3]

    www.cree.com

    [4]

    Hirokazu F, Hideki N, Masaki K 2012 Appl. Phys. Lett. 100 242102

    [5]

    Jia R X, Zhang Y M, Zhang Y M 2012 Journal Wuhan University of Technology Materials Science Edition 27 415

    [6]

    Jia R X, Zhang Y M, Zhang Y M 2008 Acta Phys. Sin. 57 4456 (in Chinese) [贾仁需, 张义门, 张玉明 2008 57 4456]

    [7]

    Bin C, Matsuhata H, Sekiguchi T, Kinoshita A, Ichinoseki K, Okumura H 2012 Appl. Phys. Lett. 100 132108

    [8]

    Bergman J P, Lendenmann H, Nilsson P A, Lindefeit U, Skytt P 2001 Mater. Sci. Forum 299 353

    [9]

    Lofgren P M, Ji W, Hallin C Gu C Y 2000 Electoro. Soc 147 164

    [10]

    Veneroni A, Omarini F Moscatelli D, Maurizio M, Stefano L, Marco M, Giuseppe P, Giuseppe A 2005 J. Cryst. Growth 275 295

    [11]

    Meziere J, Ucar M, Blanquet E, Pons M, Ferret P, Cioccio L D 2004 J. Cryst. Growth. 267 436

    [12]

    Young J L, Doo J Ch, Sung S K, Hong L L, Hae D K 2004 Surface and Coatings Technology 177 415

    [13]

    Govindhan D, Michael D, Yi C, Balaji R, Wu B, Zhang H 2006 J. Cryst. Growth 287 344

  • [1] 常帅军, 马海伦, 李浩, 欧树基, 郭建飞, 钟鸣浩, 刘莉. 一种能够改善鲁棒性的新型4H-SiC ESD防护器件.  , 2022, 71(19): 198501. doi: 10.7498/aps.71.20220879
    [2] 李传纲, 鞠涛, 张立国, 李杨, 张璇, 秦娟, 张宝顺, 张泽洪. Ti, N共掺杂4H-SiC复合增强缓冲层生长及其对PiN二极管正向性能稳定性的改善.  , 2021, 70(3): 037102. doi: 10.7498/aps.70.20200921
    [3] 李源, 石爱红, 陈国玉, 顾秉栋. 基于蒙特卡罗方法的4H-SiC(0001)面聚并台阶形貌演化机理.  , 2019, 68(7): 078101. doi: 10.7498/aps.68.20182067
    [4] 蔚翠, 李佳, 刘庆彬, 蔡树军, 冯志红. Si面4H-SiC衬底上外延石墨烯近平衡态制备.  , 2014, 63(3): 038102. doi: 10.7498/aps.63.038102
    [5] 宋坤, 柴常春, 杨银堂, 张现军, 陈斌. 栅漏间表面外延层对4H-SiC功率MESFET击穿特性的改善机理与结构优化.  , 2012, 61(2): 027202. doi: 10.7498/aps.61.027202
    [6] 苗瑞霞, 张玉明, 汤晓燕, 张义门. 4H-SiC中基面位错发光特性研究.  , 2011, 60(3): 037808. doi: 10.7498/aps.60.037808
    [7] 程萍, 张玉明, 张义门. 退火对非故意掺杂4H-SiC外延材料386 nm和388 nm发射峰的影响.  , 2011, 60(1): 017103. doi: 10.7498/aps.60.017103
    [8] 张勇, 张崇宏, 周丽宏, 李炳生, 杨义涛. 氦离子注入4H-SiC晶体的纳米硬度研究.  , 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [9] 程萍, 张玉明, 张义门, 王悦湖, 郭辉. 非故意掺杂4H-SiC外延材料本征缺陷的热稳定性.  , 2010, 59(5): 3542-3546. doi: 10.7498/aps.59.3542
    [10] 程萍, 张玉明, 郭辉, 张义门, 廖宇龙. LPCVD法制备的高纯半绝缘4H-SiC晶体ESR谱特性.  , 2009, 58(6): 4214-4218. doi: 10.7498/aps.58.4214
    [11] 吕红亮, 张义门, 张玉明, 车 勇, 王悦湖, 陈 亮. 4H-SiC 射频MESFET中陷阱参数的提取方法.  , 2008, 57(5): 2871-2874. doi: 10.7498/aps.57.2871
    [12] 贾仁需, 张义门, 张玉明, 王悦湖. N型4H-SiC同质外延生长.  , 2008, 57(10): 6649-6653. doi: 10.7498/aps.57.6649
    [13] 贾仁需, 张义门, 张玉明, 郭 辉, 栾苏珍. 4H-SiC同质外延的绿带发光与缺陷的关系.  , 2008, 57(7): 4456-4458. doi: 10.7498/aps.57.4456
    [14] 李晓红, 郭晚土, 陈学康, 吴 敢, 杨建平, 王 瑞, 曹生珠, 余 荣. 微波化学气相沉积中气压对金刚石薄膜生长速率和质量的影响.  , 2007, 56(12): 7183-7187. doi: 10.7498/aps.56.7183
    [15] 刘 磊, 任晓敏, 周 静, 王 琦, 熊德平, 黄 辉, 黄永清. 横向外延过生长磷化铟材料的生长速率模型.  , 2007, 56(6): 3570-3576. doi: 10.7498/aps.56.3570
    [16] 徐静平, 李春霞, 吴海平. 4H-SiC n-MOSFET的高温特性分析.  , 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [17] 林洪峰, 谢二庆, 马紫微, 张 军, 彭爱华, 贺德衍. 射频溅射法制备3C-SiC和4H-SiC薄膜.  , 2004, 53(8): 2780-2785. doi: 10.7498/aps.53.2780
    [18] 杨林安, 张义门, 龚仁喜, 张玉明. 4H-SiC射频功率MESFET的自热效应分析.  , 2002, 51(1): 148-152. doi: 10.7498/aps.51.148
    [19] 徐昌发, 杨银堂, 刘莉. 4H-SiC MOSFET的温度特性研究.  , 2002, 51(5): 1113-1117. doi: 10.7498/aps.51.1113
    [20] 汤定元. 关于硫化镉单晶的生长速率.  , 1962, 18(4): 207-210. doi: 10.7498/aps.18.207
计量
  • 文章访问数:  6890
  • PDF下载量:  726
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-26
  • 修回日期:  2013-12-14
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map