Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi2O2Se photoconductive detector with low power consumption and high sensitivity

Li Dan-Yang Han Xu Xu Guang-Yuan Liu Xiao Zhao Xiao-Jun Li Geng-Wei Hao Hui-Ying Dong Jing-Jing Liu Hao Xing Jie

Citation:

Bi2O2Se photoconductive detector with low power consumption and high sensitivity

Li Dan-Yang, Han Xu, Xu Guang-Yuan, Liu Xiao, Zhao Xiao-Jun, Li Geng-Wei, Hao Hui-Ying, Dong Jing-Jing, Liu Hao, Xing Jie
cstr: 32037.14.aps.69.20201044
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With the advent of graphene, atomically thin two-dimensional materials receive great attention in both science and technology. However, the characterization of zero-band gap of graphene hinders its applications in semiconductor logic and memory devices. To make up for the imperfection of graphene, one has made efforts to search for other two-dimensional layered materials. The Bi2O2Se is an emerging material with very high electron mobility, modest bandgap, and excellent thermal and chemical stability. In this work, high-quality Bi2O2Se thin films are synthesized through chemical vapor deposition. The effect of temperature on the morphology and size distribution of Bi2O2Se thin film are discussed in detail experimentally. Under an optimized experimental condition, the Bi2O2Se thin films with a lateral size of 100 μm are achieved. Interestingly, Bi2O2Se nanowires are obtained at a lower growth temperature (620–640 ℃). The photoelectric performances of Bi2O2Se on mica and silicon oxide substrate are examined based on a photoconductive mode. At a small bias of 0.5 V, the responsivity and specific detectivity of the rectangular Bi2O2Se thin film on the mica substrate reach 45800 A/W and 2.65 × 1012 Jones, respectively, and the corresponding photoelectric gain is greater than 105. The photoelectric performance of our device is comparable to the best results achieved by other research groups, which may be related to the higher quality and appropriate absorption thickness. The Bi2O2Se nanowire and Bi2O2Se thin film transferred to Si/SiO2 by a polystyrene-assisted method also exhibit a good photoresponse under the illumination of a 532 nm laser with a high optical power density (127.4 mW/cm2). The experimental results demonstrate that the Bi2O2Se has great potential applications in the optoelectronic devices with low power consumption and high sensitivity.
      Corresponding author: Li Geng-Wei, ligw@cugb.edu.cn ; Xing Jie, xingjie@cugb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974318)
    [1]

    Fu Q, Yang L, Wang W H, Han A L, Huang J, Du P W, Fan Z Y, Zhang J Y, Xiang B 2015 Adv. Mater. 27 4732Google Scholar

    [2]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys.Rev. Lett. 105 136805Google Scholar

    [3]

    武佩, 胡潇, 张健, 孙连峰 2017 66 218102Google Scholar

    Wu P, Hu X, Zhang J, Sun L F 2017 Acta Phys. Sin. 66 218102Google Scholar

    [4]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576Google Scholar

    [5]

    Li B, Huang L, Zhong M, Li Y, Wang Y, Li J B, Wei Z M 2016 Adv. Electron. Mater. 2 1600298Google Scholar

    [6]

    黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 64 038103Google Scholar

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103Google Scholar

    [7]

    Fu Q D, Zhu C, Zhao X X, et al. 2019 Adv. Mater. 31 1804945Google Scholar

    [8]

    Tian X L, Luo H Y, Wei R F, et al. 2018 Adv. Mater. 30 1801021Google Scholar

    [9]

    Yin J B, Tan Z J, Hong H, et al. 2018 Nat. Commun. 9 3311Google Scholar

    [10]

    Wu J X, Qiu C G, Fu H X, et al. 2019 Nano Lett. 19 197Google Scholar

    [11]

    Wu J X, Yuan H T, Meng M M, et al. 2017 Nat. Nanotechnol. 12 530Google Scholar

    [12]

    Tong T, Chen Y F, Qin S C, et al. 2019 Adv. Funct. Mater. 29 1905806Google Scholar

    [13]

    Liu X L, Li R P, Hong C Y, Huang G F, Pan D F, Ni Z H, Huang Y Q, Ren X M, Cheng Y C, Huang W 2019 Nanoscale 11 20707Google Scholar

    [14]

    Luo P, Zhu Ge F W, Wang F K, Lian L Y, Liu K L, Zhang J B, Zhai T Y 2019 ACS Nano 13 9028Google Scholar

    [15]

    Wu J X, Liu Y J, Tan Z J, Tan C W, Yin J B, Li T R, Tu T, Peng H L 2017 Adv. Mater. 29 1704060Google Scholar

    [16]

    Zhang C C, Wu J X, Sun Y W, Tan C W, Li T R, Tu T, Zhang Y C, Liang Y, Zhou X H, Gao P, Peng H L 2020 J. Am. Chem. Soc. 142 2726Google Scholar

    [17]

    Wu J X, Tan C W, Tan Z J, Liu Y J, Yin J B, Dang W H, Wang M Z, Peng H L 2017 Nano Lett. 17 3021Google Scholar

    [18]

    Wu Z, Liu G L, Wang Y X, Yang X, Wei T Q, Wang Q J, Liang J, Xu N, Li Z Z, Zhu B, Qi H S, Deng Y, Zhu J 2019 Adv. Funct. Mater. 29 1906639Google Scholar

    [19]

    Li J, Wang Z X, Wen Y, Chu J W, Yin L, Cheng R Q, Lei L, He P, Jiang C, Feng L P, He J 2018 Adv. Funct. Mater. 28 1706437Google Scholar

    [20]

    Li J, Wang Z X, Chu J W, Cheng Z Z, He P, Wang J J, Yin L, Cheng R Q, Li N N, Wen Y, He J 2019 Appl. Phys. Lett. 114 151104Google Scholar

    [21]

    Cheng T, Tan C, Zhang S Q, Teng Tu, Peng H L, Liu Z R 2018 J. Phys. Chem. C 122 19970Google Scholar

    [22]

    Pereira A L J, Santamaría-Pérez D, Ruiz-Fuertes J, et al. 2018 J. Phys. Chem. C 122 8853Google Scholar

    [23]

    Kufer D, Konstantatos G 2015 Nano Lett. 15 7307Google Scholar

    [24]

    Liu E, Long M S, Zeng J W, et al. 2016 Adv. Funct. Mater. 26 1938Google Scholar

    [25]

    Huan Y, Zhan X Y, Xu K, Yin L, Cheng Z Z, Jiang C, Wang Z X, He J 2016 Appl. Phys. Lett. 108 013101Google Scholar

    [26]

    Zhou X, Gan L, Tian W M, Zhang Q, Jin S Y, Li H Q, Bando Y, Golberg D, Zhai T Y 2015 Adv. Mater. 27 8035Google Scholar

    [27]

    Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Moore R L II, Yu B 2014 ACS Nano 8 514Google Scholar

    [28]

    Li X M, Zhu M, Du M D, Lv Z, Zhang L, Li Y C, Yang Y, Yang T T, Li X, Wang K L, Zhu H W, Fang Y 2016 Small 12 595Google Scholar

    [29]

    Yuan H T, Liu X G, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, G. Curto A, Ye G J, Hikita Y, Shen Z X, Zhang S C, Chen X H, Brongersma M, Hwang H, Cui Y 2015 Nat. Nanotechnol. 10 707Google Scholar

    [30]

    Yu Z R, Aceves-Mijares M, Luna J A L, Deng J X 2009 Proc. SPIE 7381 73811HGoogle Scholar

  • 图 1  (a) 层状Bi2O2Se晶体结构示意图; (b) CVD法合成Bi2O2Se实验装置示意图; (c)—(e) 云母上Bi2O2Se薄膜不同放大倍数的光学照片; (f)云母上Bi2O2Se纳米线光学照片

    Figure 1.  (a) Schematic diagram of the layered Bi2O2Se crystal structure; (b) schematic diagram of the CVD experimental setup for synthesis of Bi2O2Se film; (c)–(e) optical images of Bi2O2Se thin films grown on mica at different magnifications; (f) optical image of Bi2O2Se nanowires grown on mica.

    图 2  生长温度对Bi2O2Se薄膜形貌及尺寸分布的影响 (a)—(c) 不同生长温度下云母上Bi2O2Se薄膜的光学照片; (d) 不同生长温度下Bi2O2Se的尺寸分布图, 不同颜色代表不同尺寸范围的Bi2O2Se

    Figure 2.  Effect of growth temperature on the morphology and the size distribution of Bi2O2Se films: (a)–(c) Optical images of Bi2O2Se thin films grown at 640, 660, 680 ℃, respectively; (d) size distribution of Bi2O2Se films prepared at different growth temperatures. Different color denotes different size range.

    图 3  (a) Bi2O2Se薄膜的原子力显微镜照片; (b) Bi2O2Se薄膜的拉曼光谱, 插图代表A1g振动模式中各原子间的相对运动

    Figure 3.  (a) Atomic force microscope image of a typical Bi2O2Se thin film with a thickness of 20 nm; (b) Raman spectrum of Bi2O2Se thin film. The inset shows the relative motion of atoms in the A1g mode.

    图 4  (a)云母片上Bi2O2Se光电导器件的光学图像; (b)不同光功率密度下Bi2O2Se 器件的Ids-Vds曲线, 插图为器件时间响应的方波图; (c)不同偏置电压条件下, 光电流(Iph)与光功率密度的关系; (d)不同偏置电压条件下, 光增益与光功率密度的关系

    Figure 4.  (a) Optical image of a Bi2O2Se photoconductive detector on mica; (b) Ids-Vds curves of Bi2O2Se device under illumination by laser with different optical powers; (c) light power dependence of photocurrent (Iph) under different bias; (d) relationship between light gain and light power under different bias.

    图 5  (a) 不同光功率下Bi2O2Se纳米线光电探测器的Ids-Vds曲线, 插图为器件光学图像; (b) 在不同入射光功率密度下器件的响应度和比探测率

    Figure 5.  (a) Ids-Vds curves of Bi2O2Se nanowire photodetector on mica under different light powers. Inset is an optical image of the device. (b) Responsivity and specific detectivity of the device at different light powers.

    图 6  (a) Si/SiO2衬底上的Bi2O2Se器件示意图; (b) 不同光功率下Bi2O2Se探测器的Ids-Vds行为, 插图为器件的光学图像; (c) Iph、光增益与光源功率密度的关系; (d) Bi2O2Se探测器的响应度和比探测率对光源功率密度的依赖关系

    Figure 6.  (a) Schematic diagram of the Bi2O2Se photodetector on a Si/SiO2 substrate; (b) Ids-Vds of Bi2O2Se detector under different light powers, the inset is an optical image of the device; (c) under different biases, the relationship between photocurrent, optical gain and light intensity; (d) light power dependence of responsivity and specific detectivity of the Bi2O2Se detector.

    表 1  Bi2O2Se与其他2D半导体光电晶体管性能比较(ME, 机械剥离)

    Table 1.  Comparison of the performance of Bi2O2Se with other 2D semiconductor phototransistors (ME represents mechanical exfoliation method).

    MaterialsFabrication methodResponsivity/A·W–1Detectivity/JonesRise time/msReference
    MoS2ME4341011120[23]
    ReS2CVD12081010[24]
    SnS2CVD167100[25]
    SnSe2CVD1000101014.5[26]
    In2Se3ME5910110.18[27]
    GrapheneCVD0.7310130.32[28]
    BPME4.8 × 10–3[29]
    Bi2O2SeCVD458001012200This work
    DownLoad: CSV
    Baidu
  • [1]

    Fu Q, Yang L, Wang W H, Han A L, Huang J, Du P W, Fan Z Y, Zhang J Y, Xiang B 2015 Adv. Mater. 27 4732Google Scholar

    [2]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys.Rev. Lett. 105 136805Google Scholar

    [3]

    武佩, 胡潇, 张健, 孙连峰 2017 66 218102Google Scholar

    Wu P, Hu X, Zhang J, Sun L F 2017 Acta Phys. Sin. 66 218102Google Scholar

    [4]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576Google Scholar

    [5]

    Li B, Huang L, Zhong M, Li Y, Wang Y, Li J B, Wei Z M 2016 Adv. Electron. Mater. 2 1600298Google Scholar

    [6]

    黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 64 038103Google Scholar

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103Google Scholar

    [7]

    Fu Q D, Zhu C, Zhao X X, et al. 2019 Adv. Mater. 31 1804945Google Scholar

    [8]

    Tian X L, Luo H Y, Wei R F, et al. 2018 Adv. Mater. 30 1801021Google Scholar

    [9]

    Yin J B, Tan Z J, Hong H, et al. 2018 Nat. Commun. 9 3311Google Scholar

    [10]

    Wu J X, Qiu C G, Fu H X, et al. 2019 Nano Lett. 19 197Google Scholar

    [11]

    Wu J X, Yuan H T, Meng M M, et al. 2017 Nat. Nanotechnol. 12 530Google Scholar

    [12]

    Tong T, Chen Y F, Qin S C, et al. 2019 Adv. Funct. Mater. 29 1905806Google Scholar

    [13]

    Liu X L, Li R P, Hong C Y, Huang G F, Pan D F, Ni Z H, Huang Y Q, Ren X M, Cheng Y C, Huang W 2019 Nanoscale 11 20707Google Scholar

    [14]

    Luo P, Zhu Ge F W, Wang F K, Lian L Y, Liu K L, Zhang J B, Zhai T Y 2019 ACS Nano 13 9028Google Scholar

    [15]

    Wu J X, Liu Y J, Tan Z J, Tan C W, Yin J B, Li T R, Tu T, Peng H L 2017 Adv. Mater. 29 1704060Google Scholar

    [16]

    Zhang C C, Wu J X, Sun Y W, Tan C W, Li T R, Tu T, Zhang Y C, Liang Y, Zhou X H, Gao P, Peng H L 2020 J. Am. Chem. Soc. 142 2726Google Scholar

    [17]

    Wu J X, Tan C W, Tan Z J, Liu Y J, Yin J B, Dang W H, Wang M Z, Peng H L 2017 Nano Lett. 17 3021Google Scholar

    [18]

    Wu Z, Liu G L, Wang Y X, Yang X, Wei T Q, Wang Q J, Liang J, Xu N, Li Z Z, Zhu B, Qi H S, Deng Y, Zhu J 2019 Adv. Funct. Mater. 29 1906639Google Scholar

    [19]

    Li J, Wang Z X, Wen Y, Chu J W, Yin L, Cheng R Q, Lei L, He P, Jiang C, Feng L P, He J 2018 Adv. Funct. Mater. 28 1706437Google Scholar

    [20]

    Li J, Wang Z X, Chu J W, Cheng Z Z, He P, Wang J J, Yin L, Cheng R Q, Li N N, Wen Y, He J 2019 Appl. Phys. Lett. 114 151104Google Scholar

    [21]

    Cheng T, Tan C, Zhang S Q, Teng Tu, Peng H L, Liu Z R 2018 J. Phys. Chem. C 122 19970Google Scholar

    [22]

    Pereira A L J, Santamaría-Pérez D, Ruiz-Fuertes J, et al. 2018 J. Phys. Chem. C 122 8853Google Scholar

    [23]

    Kufer D, Konstantatos G 2015 Nano Lett. 15 7307Google Scholar

    [24]

    Liu E, Long M S, Zeng J W, et al. 2016 Adv. Funct. Mater. 26 1938Google Scholar

    [25]

    Huan Y, Zhan X Y, Xu K, Yin L, Cheng Z Z, Jiang C, Wang Z X, He J 2016 Appl. Phys. Lett. 108 013101Google Scholar

    [26]

    Zhou X, Gan L, Tian W M, Zhang Q, Jin S Y, Li H Q, Bando Y, Golberg D, Zhai T Y 2015 Adv. Mater. 27 8035Google Scholar

    [27]

    Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Moore R L II, Yu B 2014 ACS Nano 8 514Google Scholar

    [28]

    Li X M, Zhu M, Du M D, Lv Z, Zhang L, Li Y C, Yang Y, Yang T T, Li X, Wang K L, Zhu H W, Fang Y 2016 Small 12 595Google Scholar

    [29]

    Yuan H T, Liu X G, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, G. Curto A, Ye G J, Hikita Y, Shen Z X, Zhang S C, Chen X H, Brongersma M, Hwang H, Cui Y 2015 Nat. Nanotechnol. 10 707Google Scholar

    [30]

    Yu Z R, Aceves-Mijares M, Luna J A L, Deng J X 2009 Proc. SPIE 7381 73811HGoogle Scholar

  • [1] LI Yuhao, ZHU Lijun, ZHANG Chi, LI Lin, ZENG Changgan. Interlayer drag effect between graphene and two-dimensional superconductor NbSe2. Acta Physica Sinica, 2025, 74(14): 147302. doi: 10.7498/aps.74.20250361
    [2] CHENG Lingying, ZHANG Huafang, MAO Yanli. Recent Progress on Structures and Photoelectric Properties of Two-Dimensional Materials under High Pressure. Acta Physica Sinica, 2025, 74(20): . doi: 10.7498/aps.74.20251034
    [3] CUI Yueying, SONG Junming, ZHAO Weiwei, YANG Fang, LIU Hongwei, NI Zhenhua, LU Junpeng. Research Progress on Broadband Photodetectors Based on Two-Dimensional Materials. Acta Physica Sinica, 2025, 74(22): . doi: 10.7498/aps.74.20251115
    [4] Li Xin-Yue, Gao Guo-Xiang, Gao Qiang, Liu Chun-Sheng, Ye Xiao-Juan. Theoretical study of two-dimensional BeB2 monolayer as anode material for magnesium ion batteries. Acta Physica Sinica, 2024, 73(11): 118201. doi: 10.7498/aps.73.20240134
    [5] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [6] Song Rui, Wang Bi-Li, Feng Kai, Wang Li, Liang Dan-Dan. Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [7] Zhu Yu-Jie, Jiang Tao, Ye Xiao-Juan, Liu Chun-Sheng. Theoretical prediction of novel two-dimensional auxetic material SiGeS and its electronic and optical properties. Acta Physica Sinica, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [8] Han Dan, Liu Zhi-Hua, Liu Lu-Lu, Han Xiao-Mei, Liu Dong-Ming, Zhuo Kai, Sang Sheng-Bo. Preparation and gas sensing properties of a novel two-dimensional material Ti3C2Tx MXene. Acta Physica Sinica, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [9] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [10] Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211516
    [11] Luo Shi, Wei Da-Peng, Wei Da-Cheng. Applications of two-dimensional materials in bio-sensors. Acta Physica Sinica, 2021, 70(6): 064701. doi: 10.7498/aps.70.20201613
    [12] Lei Ting, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, Zeng Zhong-Ming. Photogating effect in two-dimensional photodetectors. Acta Physica Sinica, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [13] Fabrication and Gas Sensing Properties of Two-Dimensional Ti3C2Tx Mxene. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211048
    [14] Wang Shuo, Wang Wen-Hui, Lü Jun-Peng, Ni Zhen-Hua. Chemical vapor deposition growth of large-areas two dimensional materials: Approaches and mechanisms. Acta Physica Sinica, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [15] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [16] Zhang Bao-Jun, Wang Fang, Shen Jia-Qiang, Shan Xin, Di Xi-Chao, Hu Kai, Zhang Kai-Liang. Effect analysis and magnetoelectric properties of hydrogen in Co-doped MoSe2 Co-growth. Acta Physica Sinica, 2020, 69(4): 048101. doi: 10.7498/aps.69.20191302
    [17] Wang Cong, Liu Jie, Zhang Han. Ultrafast pulse lasers based on two-dimensinal nanomaterials. Acta Physica Sinica, 2019, 68(18): 188101. doi: 10.7498/aps.68.20190751
    [18] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [19] Dong Yan-Fang, He Da-Wei, Wang Yong-Sheng, Xu Hai-Teng, Gong Zhe. Synthesis of large size monolayer MoS2 with a simple chemical vapor deposition. Acta Physica Sinica, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [20] Feng Qiu-Ju, Xu Rui-Zhuo, Guo Hui-Ying, Xu Kun, Li Rong, Tao Peng-Cheng, Liang Hong-Wei, Liu Jia-Yuan, Mei Yi-Ying. Influences of the substrate position on the morphology and characterization of phosphorus doped ZnO nanomaterial. Acta Physica Sinica, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
Metrics
  • Abstract views:  12501
  • PDF Downloads:  299
  • Cited By: 0
Publishing process
  • Received Date:  02 July 2020
  • Accepted Date:  28 August 2020
  • Available Online:  10 December 2020
  • Published Online:  20 December 2020
  • /

    返回文章
    返回
    Baidu
    map