Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photogating effect in two-dimensional photodetectors

Lei Ting Lü Wei-Ming Lü Wen-Xing Cui Bo-Yao Hu Rui Shi Wen-Hua Zeng Zhong-Ming

Citation:

Photogating effect in two-dimensional photodetectors

Lei Ting, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, Zeng Zhong-Ming
PDF
HTML
Get Citation
  • In recent years, due to their unique physical, chemical and electronic properties, two-dimensional materials have received more and more researchers’ attention. In particular, the excellent optoelectronic properties and transport properties of two-dimensional materials such as graphene, black phosphorous and transition metal sulfide materials make them have broad application prospects in the field of next-generation optoelectronic devices. In this article, we will mainly introduce the advantages of two-dimensional materials in the field of photodetection, outline the basic principles and parameters of photodetectors, focus on the difference between the grating effect and the traditional photoconductive effect, and the reasons and characteristics of improving optical gain and optical responsivity. Then we review the latest developments and applications of grating local control in photodetectors, and finally summarize the problems faced by the photodetectors of this kind and their prospects for the future.
      Corresponding author: Shi Wen-Hua, whshi2007@sinano.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFB2005600) and the National Natural Science Foundation of China (Grant No. 51732010)
    [1]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 355 aac9439

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [3]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379Google Scholar

    [4]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [5]

    Geim A K 2009 Science 324 1530Google Scholar

    [6]

    Liu C H, Chang Y C, Norris T B, Zhong Z 2014 Nat. Nanotechnol. 9 273Google Scholar

    [7]

    Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [8]

    Wang Q H, Kalantar Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [9]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [10]

    Chen P, Li N, Chen X, Ong W J, Zhao X 2017 2D Materials 5 014002

    [11]

    Guo Z, Chen S, Wang Z, Yang Z, Liu F, Xu Y, Wang J, Yi Y, Zhang H, Liao L, Chu P K, Yu X F 2017 Adv. Mater. 29 1703811Google Scholar

    [12]

    Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M, Atwater H 2014 Nano Lett. 14 3876Google Scholar

    [13]

    Liu L, Feng Y P, Shen Z X 2003 Phys. Rev. B 68 104102Google Scholar

    [14]

    Wang J, Fang H, Wang X, Chen X, Lu W, Hu W 2017 Small 13 1700894Google Scholar

    [15]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [16]

    Ren Y X, Dai T J, He B, Liu X Z 2019 Ieee Electron Device Lett. 40 48Google Scholar

    [17]

    Guo Q S, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B C, Li C, Han S J, Wang H, Xia Q F, Ma T P, Mueller T, Xia F N 2016 Nano Lett. 16 4648Google Scholar

    [18]

    Li L, Wang W K, Chai Y, Li H Q, Tian M L, Zhai T Y 2017 Adv. Funct. Mater. 27 1701011Google Scholar

    [19]

    Li J, Niu L, Zheng Z, Yan F 2014 Adv. Mater. 26 5239Google Scholar

    [20]

    Park H S, Ha T J, Hong Y, Lee J H, Lee B J, You B H, Kim N D, Han M K 2008 JSID 16 1165Google Scholar

    [21]

    Aiello A, Hoque A K M H, Baten M Z, Bhattacharya P 2019 ACS Photonics 6 1289Google Scholar

    [22]

    Son D I, Kim T W, Shim J H, Jung J H, Lee D U, Lee J M, Park W I, Choi W K 2010 Nano Lett. 10 2441Google Scholar

    [23]

    Gwon H, Kim H S, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T, Kang K 2011 Energy Environ. Sci. 4 1277Google Scholar

    [24]

    Long M, Wang P, Fang H, Hu W 2018 Adv. Funct. Mater. 29 1803807

    [25]

    Colace L, Masini G, Galluzzi F, Assanto G, Capellini G, Di Gaspare L, Palange E, Evangelisti F 1998 Appl. Phys. Lett. 72 3175Google Scholar

    [26]

    Petritz R L 1956 APS 104 1508

    [27]

    Jie J S, Zhang W J, Jiang Y, Meng X M, Li Y Q, Lee S T 2006 Nano Lett. 6 1887Google Scholar

    [28]

    Huang H, Wang J, Hu W, Liao L, Wang P, Wang X, Gong F, Chen Y, Wu G, Luo W, Shen H, Lin T, Sun J, Meng X, Chen X, Chu J 2016 Nanotechnology 27 445201Google Scholar

    [29]

    Rubinelli F A 2016 Thin Solid Films 619 102Google Scholar

    [30]

    Kondo T, Hayafuji J J, Munekata H 2006 Jpn. J. Appl. Phys. 45 L663Google Scholar

    [31]

    Ellsworth D, Lu L, Lan J, Chang H, Li P, Wang Z, Hu J, Johnson B, Bian Y, Xiao J, Wu R, Wu M 2016 Nature Phys. 12 861Google Scholar

    [32]

    Xu X, Gabor N M, Alden J S, Van Der Zande A M, McEuen P L 2010 Nano Lett. 10 562Google Scholar

    [33]

    Buscema M, Barkelid M, Zwiller V, Van Der Zant H S J, Steele G A, Castellanos Gomez A 2013 Nano Lett. 13 358Google Scholar

    [34]

    Huang M, Wang M, Chen C, Ma Z, Li X, Han J, Wu Y 2016 Adv. Mater. 28 3481Google Scholar

    [35]

    Island J O, Blanter S I, Buscema M, van der Zant H S J, Castellanos Gomez A 2015 Nano Lett. 15 7853Google Scholar

    [36]

    Murali K, Abraham N, Das S, Kallatt S, Majumdar K 2019 ACS Appl. Mater. Interfaces 11 30010Google Scholar

    [37]

    Zhou X, Hu X, Zhou S, Song H, Zhang Q, Pi L, Li L, Li H, Lu J, Zhai T 2018 Adv. Mater. 30 1703286Google Scholar

    [38]

    Kim J, Park V, Jang H, et al. 2017 ACS Photonics 4 482Google Scholar

    [39]

    Wang F, Zhang Y, Gao Y, Luo P, Su J, Han W, Liu K, Li H, Zhai T 2019 Small 15 e1901347Google Scholar

    [40]

    Furchi M M, Polyushkin D K, Pospischil A, Mueller T 2014 Nano Lett. 14 6165Google Scholar

    [41]

    Zhu J L, Zhang G, Wei J, Sun J L 2012 Appl. Phys. Lett. 101 123117Google Scholar

    [42]

    Lui C H, Frenzel A J, Pilon D V, Lee Y H, Ling X, Akselrod G M, Kong J, Gedik N 2014 Phys. Rev. Lett. 113 166801Google Scholar

    [43]

    Nakanishi H, Bishop K J, Kowalczyk B, Nitzan A, Weiss E A, Tretiakov K V, Apodaca M M, Klajn R, Stoddart J F, Grzybowski B A 2009 Nature 460 371Google Scholar

    [44]

    Fang H H, Hu W D 2017 Adv. Sci. 4 1700323Google Scholar

    [45]

    Wang L, Zou X, Lin J, Jiang J, Liu Y, Liu X, Zhao X, Liu Y F, Ho J C, Liao L 2019 ACS Nano 13 4804Google Scholar

    [46]

    Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X, Ye P D 2014 ACS Nano 8 8292Google Scholar

    [47]

    Zhu W, Yogeesh M N, Yang S, Aldave S H, Kim J S, Sonde S, Tao L, Lu N, Akinwande D 2015 Nano Lett. 15 1883Google Scholar

    [48]

    Schütz M, Maschio L, Karttunen A J, Usvyat D 2017 J. Phys. Chem. Lett. 8 1290Google Scholar

    [49]

    Sun L, Lin Z, Peng J, Weng J, Huang Y, Luo Z 2015 Sci. Rep. 4 4794Google Scholar

    [50]

    Hanlon D, Backes C, Doherty E, et al. 2015 Nat. Commun. 6 8563Google Scholar

    [51]

    Smith J B, Hagaman D, Ji H F 2016 Nanotechnology 27 215602Google Scholar

    [52]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30Google Scholar

    [53]

    Liu C H, Dissanayake N M, Lee S, Lee K, Zhong Z 2012 ACS Nano 6 7172Google Scholar

    [54]

    Gabor N M, Song J C W, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S, Jarillo Herrero P 2011 Science 334 648Google Scholar

    [55]

    Guo X, Wang W, Nan H, Yu Y, Jiang J, Zhao W, Li J, Zafar Z, Xiang N, Ni Z, Hu W, You Y, Ni Z 2016 Optica 3 1066Google Scholar

    [56]

    Howell S W, Ruiz I, Davids P S, Harrison R K, Smith S W, Goldflam M D, Martin J B, Martinez N J, Beechem T E 2017 Sci. Rep. 7 14651Google Scholar

    [57]

    Yu X, Dong Z, Liu Y, Liu T, Tao J, Zeng Y, Yang J K W, Wang Q J 2016 Nanoscale 8 327Google Scholar

    [58]

    Zhang K, Peng M, Yu A, Fan Y, Zhai J, Wang Z L 2019 Mater. Horizons 6 826Google Scholar

    [59]

    Fukushima S, Shimatani M, Okuda S, Ogawa S 2018 Appl. Phys. Lett. 113 061102Google Scholar

    [60]

    Cao G, Wang F, Peng M, Shao X, Yang B, Hu W, Li X, Chen J, Shan Y, Wu P, Hu L, Liu R, Gong H, Cong C, Qiu Z J 2020 Adv. Electron. Mater. 6 1901007Google Scholar

    [61]

    Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar

    [62]

    Miller B, Parzinger E, Vernickel A, Holleitner A W, Wurstbauer U 2015 Appl. Phys. Lett. 106 122103Google Scholar

    [63]

    Kufer D, Konstantatos G 2015 Nano Lett. 15 7307Google Scholar

    [64]

    Han P, Adler E R, Liu Y J, St Marie L, El Fatimy A, Melis S, Van Keuren E, Barbara P 2019 Nanotechnology 30 284004Google Scholar

    [65]

    Deng J N, Zong L Y, Zhu M S, Liao F Y, Xie Y Y, Guo Z X, Liu J, Lu B R, Wang J L, Hu W D, Zhou P, Bao W Z, Wan J 2019 Adv. Funct. Mater. 19 06242

    [66]

    Tu L, Cao R, Wang X, Chen Y, Wu S, Wang F, Wang Z, Shen H, Lin T, Zhou P, Meng X, Hu W, Liu Q, Wang J, Liu M, Chu J 2020 Nat. Commun. 11 101Google Scholar

    [67]

    Thakar K, Mukherjee B, Grover S, Kaushik N, Deshmukh M, Lodha S 2018 ACS Appl. Mater. Interfaces 10 36512Google Scholar

    [68]

    Velický M, Bradley D F, Cooper A J, Hill E W, Kinloch I A, Mishchenko A, Novoselov K S, Patten H V, Toth P S, Valota A T, Worrall S D, Dryfe R A W 2014 ACS Nano 8 10089Google Scholar

    [69]

    Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J 2013 Nat. Commun. 4 1811Google Scholar

    [70]

    Freitag M, Low T, Zhu W, Yan H, Xia F, Avouris P 2013 Nat. Commun. 4 1951Google Scholar

    [71]

    Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C, Novoselov K S 2011 Nat. Commun. 2 458Google Scholar

    [72]

    Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar

    [73]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451Google Scholar

    [74]

    Xia F, Mueller T, Golizadeh Mojarad R, Freitag M, Lin Y M, Tsang J, Perebeinos V, Avouris P 2009 Nano Lett. 9 1039Google Scholar

    [75]

    Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y, Duan X 2011 Nat. Commun. 2 579Google Scholar

    [76]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G, Mueller T 2012 Nano Lett. 12 2773Google Scholar

    [77]

    Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S, Ghosh A 2013 Nature Nanotech. 8 826Google Scholar

    [78]

    Qiao H, Yuan J, Xu Z, Chen C, Lin S, Wang Y, Song J, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S, Bao Q 2015 ACS Nano 9 1886Google Scholar

    [79]

    Wang N, West D, Duan W, Zhang S B 2019 Nanoscale Adv. 1 470Google Scholar

    [80]

    Liu Y, Weinert M, Li L 2012 APS 108 115501

    [81]

    Xu J, Song Y J, Park J H, Lee S 2018 Solid State Electron. 144 86Google Scholar

    [82]

    Liu Y, Shivananju B N, Wang Y, Zhang Y, Yu W, Xiao S, Sun T, Ma W, Mu H, Lin S, Zhang H, Lu Y, Qiu C W, Li S, Bao Q 2017 ACS Appl. Mater. Interfaces 9 36137Google Scholar

    [83]

    Liu B Y, You C Y, Zhao C, Shen G L, Liu Y W, Li Y F, Yan H, Zhang Y Z 2019 Chin. Opt. Lett. 17 020002Google Scholar

    [84]

    Lan C, Li C, Wang S, He T, Zhou Z, Wei D, Guo H, Yang H, Liu Y 2017 J. Mater. Chem. C 5 1494Google Scholar

    [85]

    Kang B, Kim Y, Yoo W J, Lee C 2018 Small 14 1802593Google Scholar

    [86]

    Yu W, Li S, Zhang Y, Ma W, Sun T, Yuan J, Fu K, Bao Q 2017 Small 13 1700268Google Scholar

    [87]

    Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y, Li L J 2014 Sci. Rep. 4 3826

    [88]

    Chang P H, Li C S, Fu F Y, Huang K Y, Chou A S, Wu C I 2018 Adv. Funct. Mater. 28 1800179Google Scholar

    [89]

    Qi Z Y, Yang T F, Li D, Li H L, Wang X, Zhang X H, Li F, Zheng W H, Fan P, Zhuang X J, Pan A L 2019 Mater. Horizons 6 1474Google Scholar

    [90]

    Yang T, Zheng B, Wang Z, Xu T, Pan C, Zou J, Zhang X, Qi Z, Liu H, Feng Y, Hu W, Miao F, Sun L, Duan X, Pan A 2017 Nat. Commun. 8 1906Google Scholar

    [91]

    Krause M, Dent E W, Bear J E, Loureiro J J, Gertler F B 2003 Annu. Rev. Cell. Dev. Biol. 19 541Google Scholar

    [92]

    Shim J, Kang D H, Kim Y, Kum H, Kong W, Bae S H, Almansouri I, Lee K, Park J H, Kim J 2018 Carbon 133 78Google Scholar

    [93]

    Ye L, Wang P, Luo W J, Gong F, Liao L, Liu T D, Tong L, Zang J F, Xu J B, Hu W D 2017 Nano Energy 37 53Google Scholar

    [94]

    Guo N, Xiao L, Gong F, Luo M, Wang F, Jia Y, Chang H, Liu J, Li Q, Wu Y, Wang Y, Shan C, Xu Y, Zhou P, Hu W 2020 Adv. Science 7 1901637Google Scholar

  • 图 1  光栅效应特性 (a) 光栅效应示意图[39]; (b) 光照后, 转移特性曲线${I}_{\mathrm{d}\mathrm{s}}\text-{V}_{\mathrm{g}}$, 其中, 黑线、红线和蓝线分别代表暗电流、光栅效应下的光电流以及光栅效应和光电导效应的叠加的光电流; (c)光栅效应器件中的能带排布示意图[44].

    Figure 1.  The characteristics of the photogating effect: (a) Schematic diagram of the photogating effect[39]; (b) the ${I}_{\mathrm{d}\mathrm{s}}\text-{V}_{\mathrm{g}}$ transfer chara-cteristic curve after illumination. The black line, red line and blue line represent dark current, photocurrent of photogating effect, the superimposed photocurrent of photogating effect and photoconductive effect, respectively; (c) schematic diagram of band arrangement in photogating effect devices[44].

    图 2  单一二维材料光电探测器 (a) 双层石墨烯异质结中的光激发热载流子隧穿[6]; (b) p型轻掺杂Si/SiO2衬底上的石墨烯光电探测器的示意图[55]; (c) p型InSb衬底上石墨烯场效应晶体管的示意图[59]; (d) 电荷陷阱模型和简化的能带图[40]; (e) 光响应度与顶栅Vtg的关系[65]; (f) 不同衬底下的光响应度[58]; (g) 在不同入射功率下, 在最大跨导附近实现最大光电流[35]; (h) 光电流与时间的关系[67].

    Figure 2.  Single two-dimensional material photodetector: (a) Photoexcited hot carrier tunnelling in graphene double-layer heterostructures[6]; (b) schematic diagram of the graphene photodetector on lightly p-doped silicon/SiO2 substrate[55]; (c) schematic diagram of the InSb-based graphene field effect transistor (FET)[59]; (d) charge trapping model and simplified energy band diagram[40]; (e) the relationship between photoresponsivity and Vtg[65]; (f) photoresponsivity under different substrates[58]; (g) the maximum photocurrent is realized near the maximum transconductance at different incident power[35]; (h) the relationship between photocurrent and time[67].

    图 3  石墨烯异质结光电探测器: (a) 石墨烯/ MoS2异质结光电探测器的示意图; (b) 石墨烯/Bi2Te3异质结光电探测器的示意图; (c) 石墨烯/BP异质结光电探测器的示意图; (d)光响应度与光照强度的关系; (e)光响应度与波长的关系(VD = –3 V, VG = –30 V); (f)在波长为980 nm, 光电流和光响应随入射光强的关系 (VDS = 1 V, VG = 0 V).

    Figure 3.  The photodetectors based on graphene heterostructures: (a) Schematic of device architecture graphene/MoS2 photodetector[77]; (b) schematic of the heterostructure phototransistor device[78]; (c) graphene/BP heterostructure photodetector[82]; (d) the relationship between photoresponsivity and light intensity[89]; (e) responsivity as a function of the wavelength (VD = –3 V, VG = –30 V)[85]; (f) photocurrent and photoresponsivity versus incident light power at 980 nm. (VDS = 1 V, VG = 0 V)[86].

    图 4  基于光栅效应的PN异质结光电探测器 (a) PbI2/WS2异质结构光电探测器; (b) PbI2/WS2光电探测器的光响应时间[89]; (c) WSe2 /SnS2多电极异质结构背栅器件的示意图; (d) WSe2/SnS2异质结的能带结构和光激发、层间弛豫过程的示意图[90]; (e)基于光栅效应的WSe2/BP光电探测器示意图; (f) 在1 mW/cm2的入射功率密度和0.5 V偏置下, 光增益G和探测率D对不同波长照明的依赖关系[93]; (g) 在637 nm光照下器件的示意图; (h)顶栅电极侧面和重叠区域之间形成导电通道Vtg; (i)一个调制周期: 上升时间为10 µs、下降时间为10 µs的快速分量和20 µs的慢速分量组成[94].

    Figure 4.  PN heterojunction photodetector based on photogating effect: (a) Schematic device structure of PbI2/WS2 photodetector fabricated on SiO2/Si substrate; (b) time-resolved photoresponse of PbI2/WS2 phototransistors[89]; (c) schematic diagram of the multi-electrode WSe2/SnS2 vdW heterostructure backgate device; (d) schematic diagram of WSe2/SnS2 heterostructure band structure and photoexcitation, interlayer relaxation process in WSe2/SnS2 heterojunction[90]; (e) schematic illustration of the BP on WSe2 photodetector with photogate structure; (f) the dependence of the photogain $ G $ and detectivity $ {D}^{*} $ on the different wavelength illumination at 1 mW/cm2 incident illumination power density and 0.5 V bias[93]; (g) schematic illustration of the device in the dark under 637 nm illumination; (h) a conductive path for Vtg is formed between side top-gate electrode and overlapped region; (i) a single modulation cycle The rise time is ≈10 µs The fall time consists of a fast component of ≈10 µs and a slow component of ≈ 20 µs[94].

    图 5  基于光栅效应的光电探测器新结构 (a)器件结构示意图; (b)器件结构能带图

    Figure 5.  New structure of photodetector based on photogating effect: (a) Schematic diagram of device structure; (b) sche-matic diagram of energy band structure

    表 1  基于石墨烯异质结(Gr)的光栅局域调控光电探测器

    Table 1.  Graphene(Gr)-based photodetectors with grating photogating.

    MaterialResponsivity/(A·W–1)GainResponse time/msDetection range/nmRef.
    Gr/MoSe21.3 × 10422000.0550[83]
    Gr/MoTe2970.824.69 × 10878.01064[86]
    Gr/ReS27 × 10530.0550 nm[85]
    Gr/WS2950340–680 nm[84]
    Gr/MoS2107108650[87]
    Gr/BP55.7536.0655[82]
    Gr/BiI36 × 1068.0532[88]
    Gr/PbSe6613782425.0[16]
    Gr/Bi2Te335838.7532—1550[78]
    Gr/MoS25 × 108635[77]
    Gr/Bi2Se38.18near-IR 750—2500[38]
    DownLoad: CSV
    Baidu
  • [1]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 355 aac9439

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [3]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379Google Scholar

    [4]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [5]

    Geim A K 2009 Science 324 1530Google Scholar

    [6]

    Liu C H, Chang Y C, Norris T B, Zhong Z 2014 Nat. Nanotechnol. 9 273Google Scholar

    [7]

    Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [8]

    Wang Q H, Kalantar Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [9]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [10]

    Chen P, Li N, Chen X, Ong W J, Zhao X 2017 2D Materials 5 014002

    [11]

    Guo Z, Chen S, Wang Z, Yang Z, Liu F, Xu Y, Wang J, Yi Y, Zhang H, Liao L, Chu P K, Yu X F 2017 Adv. Mater. 29 1703811Google Scholar

    [12]

    Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M, Atwater H 2014 Nano Lett. 14 3876Google Scholar

    [13]

    Liu L, Feng Y P, Shen Z X 2003 Phys. Rev. B 68 104102Google Scholar

    [14]

    Wang J, Fang H, Wang X, Chen X, Lu W, Hu W 2017 Small 13 1700894Google Scholar

    [15]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [16]

    Ren Y X, Dai T J, He B, Liu X Z 2019 Ieee Electron Device Lett. 40 48Google Scholar

    [17]

    Guo Q S, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B C, Li C, Han S J, Wang H, Xia Q F, Ma T P, Mueller T, Xia F N 2016 Nano Lett. 16 4648Google Scholar

    [18]

    Li L, Wang W K, Chai Y, Li H Q, Tian M L, Zhai T Y 2017 Adv. Funct. Mater. 27 1701011Google Scholar

    [19]

    Li J, Niu L, Zheng Z, Yan F 2014 Adv. Mater. 26 5239Google Scholar

    [20]

    Park H S, Ha T J, Hong Y, Lee J H, Lee B J, You B H, Kim N D, Han M K 2008 JSID 16 1165Google Scholar

    [21]

    Aiello A, Hoque A K M H, Baten M Z, Bhattacharya P 2019 ACS Photonics 6 1289Google Scholar

    [22]

    Son D I, Kim T W, Shim J H, Jung J H, Lee D U, Lee J M, Park W I, Choi W K 2010 Nano Lett. 10 2441Google Scholar

    [23]

    Gwon H, Kim H S, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T, Kang K 2011 Energy Environ. Sci. 4 1277Google Scholar

    [24]

    Long M, Wang P, Fang H, Hu W 2018 Adv. Funct. Mater. 29 1803807

    [25]

    Colace L, Masini G, Galluzzi F, Assanto G, Capellini G, Di Gaspare L, Palange E, Evangelisti F 1998 Appl. Phys. Lett. 72 3175Google Scholar

    [26]

    Petritz R L 1956 APS 104 1508

    [27]

    Jie J S, Zhang W J, Jiang Y, Meng X M, Li Y Q, Lee S T 2006 Nano Lett. 6 1887Google Scholar

    [28]

    Huang H, Wang J, Hu W, Liao L, Wang P, Wang X, Gong F, Chen Y, Wu G, Luo W, Shen H, Lin T, Sun J, Meng X, Chen X, Chu J 2016 Nanotechnology 27 445201Google Scholar

    [29]

    Rubinelli F A 2016 Thin Solid Films 619 102Google Scholar

    [30]

    Kondo T, Hayafuji J J, Munekata H 2006 Jpn. J. Appl. Phys. 45 L663Google Scholar

    [31]

    Ellsworth D, Lu L, Lan J, Chang H, Li P, Wang Z, Hu J, Johnson B, Bian Y, Xiao J, Wu R, Wu M 2016 Nature Phys. 12 861Google Scholar

    [32]

    Xu X, Gabor N M, Alden J S, Van Der Zande A M, McEuen P L 2010 Nano Lett. 10 562Google Scholar

    [33]

    Buscema M, Barkelid M, Zwiller V, Van Der Zant H S J, Steele G A, Castellanos Gomez A 2013 Nano Lett. 13 358Google Scholar

    [34]

    Huang M, Wang M, Chen C, Ma Z, Li X, Han J, Wu Y 2016 Adv. Mater. 28 3481Google Scholar

    [35]

    Island J O, Blanter S I, Buscema M, van der Zant H S J, Castellanos Gomez A 2015 Nano Lett. 15 7853Google Scholar

    [36]

    Murali K, Abraham N, Das S, Kallatt S, Majumdar K 2019 ACS Appl. Mater. Interfaces 11 30010Google Scholar

    [37]

    Zhou X, Hu X, Zhou S, Song H, Zhang Q, Pi L, Li L, Li H, Lu J, Zhai T 2018 Adv. Mater. 30 1703286Google Scholar

    [38]

    Kim J, Park V, Jang H, et al. 2017 ACS Photonics 4 482Google Scholar

    [39]

    Wang F, Zhang Y, Gao Y, Luo P, Su J, Han W, Liu K, Li H, Zhai T 2019 Small 15 e1901347Google Scholar

    [40]

    Furchi M M, Polyushkin D K, Pospischil A, Mueller T 2014 Nano Lett. 14 6165Google Scholar

    [41]

    Zhu J L, Zhang G, Wei J, Sun J L 2012 Appl. Phys. Lett. 101 123117Google Scholar

    [42]

    Lui C H, Frenzel A J, Pilon D V, Lee Y H, Ling X, Akselrod G M, Kong J, Gedik N 2014 Phys. Rev. Lett. 113 166801Google Scholar

    [43]

    Nakanishi H, Bishop K J, Kowalczyk B, Nitzan A, Weiss E A, Tretiakov K V, Apodaca M M, Klajn R, Stoddart J F, Grzybowski B A 2009 Nature 460 371Google Scholar

    [44]

    Fang H H, Hu W D 2017 Adv. Sci. 4 1700323Google Scholar

    [45]

    Wang L, Zou X, Lin J, Jiang J, Liu Y, Liu X, Zhao X, Liu Y F, Ho J C, Liao L 2019 ACS Nano 13 4804Google Scholar

    [46]

    Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X, Ye P D 2014 ACS Nano 8 8292Google Scholar

    [47]

    Zhu W, Yogeesh M N, Yang S, Aldave S H, Kim J S, Sonde S, Tao L, Lu N, Akinwande D 2015 Nano Lett. 15 1883Google Scholar

    [48]

    Schütz M, Maschio L, Karttunen A J, Usvyat D 2017 J. Phys. Chem. Lett. 8 1290Google Scholar

    [49]

    Sun L, Lin Z, Peng J, Weng J, Huang Y, Luo Z 2015 Sci. Rep. 4 4794Google Scholar

    [50]

    Hanlon D, Backes C, Doherty E, et al. 2015 Nat. Commun. 6 8563Google Scholar

    [51]

    Smith J B, Hagaman D, Ji H F 2016 Nanotechnology 27 215602Google Scholar

    [52]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30Google Scholar

    [53]

    Liu C H, Dissanayake N M, Lee S, Lee K, Zhong Z 2012 ACS Nano 6 7172Google Scholar

    [54]

    Gabor N M, Song J C W, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S, Jarillo Herrero P 2011 Science 334 648Google Scholar

    [55]

    Guo X, Wang W, Nan H, Yu Y, Jiang J, Zhao W, Li J, Zafar Z, Xiang N, Ni Z, Hu W, You Y, Ni Z 2016 Optica 3 1066Google Scholar

    [56]

    Howell S W, Ruiz I, Davids P S, Harrison R K, Smith S W, Goldflam M D, Martin J B, Martinez N J, Beechem T E 2017 Sci. Rep. 7 14651Google Scholar

    [57]

    Yu X, Dong Z, Liu Y, Liu T, Tao J, Zeng Y, Yang J K W, Wang Q J 2016 Nanoscale 8 327Google Scholar

    [58]

    Zhang K, Peng M, Yu A, Fan Y, Zhai J, Wang Z L 2019 Mater. Horizons 6 826Google Scholar

    [59]

    Fukushima S, Shimatani M, Okuda S, Ogawa S 2018 Appl. Phys. Lett. 113 061102Google Scholar

    [60]

    Cao G, Wang F, Peng M, Shao X, Yang B, Hu W, Li X, Chen J, Shan Y, Wu P, Hu L, Liu R, Gong H, Cong C, Qiu Z J 2020 Adv. Electron. Mater. 6 1901007Google Scholar

    [61]

    Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar

    [62]

    Miller B, Parzinger E, Vernickel A, Holleitner A W, Wurstbauer U 2015 Appl. Phys. Lett. 106 122103Google Scholar

    [63]

    Kufer D, Konstantatos G 2015 Nano Lett. 15 7307Google Scholar

    [64]

    Han P, Adler E R, Liu Y J, St Marie L, El Fatimy A, Melis S, Van Keuren E, Barbara P 2019 Nanotechnology 30 284004Google Scholar

    [65]

    Deng J N, Zong L Y, Zhu M S, Liao F Y, Xie Y Y, Guo Z X, Liu J, Lu B R, Wang J L, Hu W D, Zhou P, Bao W Z, Wan J 2019 Adv. Funct. Mater. 19 06242

    [66]

    Tu L, Cao R, Wang X, Chen Y, Wu S, Wang F, Wang Z, Shen H, Lin T, Zhou P, Meng X, Hu W, Liu Q, Wang J, Liu M, Chu J 2020 Nat. Commun. 11 101Google Scholar

    [67]

    Thakar K, Mukherjee B, Grover S, Kaushik N, Deshmukh M, Lodha S 2018 ACS Appl. Mater. Interfaces 10 36512Google Scholar

    [68]

    Velický M, Bradley D F, Cooper A J, Hill E W, Kinloch I A, Mishchenko A, Novoselov K S, Patten H V, Toth P S, Valota A T, Worrall S D, Dryfe R A W 2014 ACS Nano 8 10089Google Scholar

    [69]

    Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J 2013 Nat. Commun. 4 1811Google Scholar

    [70]

    Freitag M, Low T, Zhu W, Yan H, Xia F, Avouris P 2013 Nat. Commun. 4 1951Google Scholar

    [71]

    Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C, Novoselov K S 2011 Nat. Commun. 2 458Google Scholar

    [72]

    Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar

    [73]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451Google Scholar

    [74]

    Xia F, Mueller T, Golizadeh Mojarad R, Freitag M, Lin Y M, Tsang J, Perebeinos V, Avouris P 2009 Nano Lett. 9 1039Google Scholar

    [75]

    Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y, Duan X 2011 Nat. Commun. 2 579Google Scholar

    [76]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G, Mueller T 2012 Nano Lett. 12 2773Google Scholar

    [77]

    Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S, Ghosh A 2013 Nature Nanotech. 8 826Google Scholar

    [78]

    Qiao H, Yuan J, Xu Z, Chen C, Lin S, Wang Y, Song J, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S, Bao Q 2015 ACS Nano 9 1886Google Scholar

    [79]

    Wang N, West D, Duan W, Zhang S B 2019 Nanoscale Adv. 1 470Google Scholar

    [80]

    Liu Y, Weinert M, Li L 2012 APS 108 115501

    [81]

    Xu J, Song Y J, Park J H, Lee S 2018 Solid State Electron. 144 86Google Scholar

    [82]

    Liu Y, Shivananju B N, Wang Y, Zhang Y, Yu W, Xiao S, Sun T, Ma W, Mu H, Lin S, Zhang H, Lu Y, Qiu C W, Li S, Bao Q 2017 ACS Appl. Mater. Interfaces 9 36137Google Scholar

    [83]

    Liu B Y, You C Y, Zhao C, Shen G L, Liu Y W, Li Y F, Yan H, Zhang Y Z 2019 Chin. Opt. Lett. 17 020002Google Scholar

    [84]

    Lan C, Li C, Wang S, He T, Zhou Z, Wei D, Guo H, Yang H, Liu Y 2017 J. Mater. Chem. C 5 1494Google Scholar

    [85]

    Kang B, Kim Y, Yoo W J, Lee C 2018 Small 14 1802593Google Scholar

    [86]

    Yu W, Li S, Zhang Y, Ma W, Sun T, Yuan J, Fu K, Bao Q 2017 Small 13 1700268Google Scholar

    [87]

    Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y, Li L J 2014 Sci. Rep. 4 3826

    [88]

    Chang P H, Li C S, Fu F Y, Huang K Y, Chou A S, Wu C I 2018 Adv. Funct. Mater. 28 1800179Google Scholar

    [89]

    Qi Z Y, Yang T F, Li D, Li H L, Wang X, Zhang X H, Li F, Zheng W H, Fan P, Zhuang X J, Pan A L 2019 Mater. Horizons 6 1474Google Scholar

    [90]

    Yang T, Zheng B, Wang Z, Xu T, Pan C, Zou J, Zhang X, Qi Z, Liu H, Feng Y, Hu W, Miao F, Sun L, Duan X, Pan A 2017 Nat. Commun. 8 1906Google Scholar

    [91]

    Krause M, Dent E W, Bear J E, Loureiro J J, Gertler F B 2003 Annu. Rev. Cell. Dev. Biol. 19 541Google Scholar

    [92]

    Shim J, Kang D H, Kim Y, Kum H, Kong W, Bae S H, Almansouri I, Lee K, Park J H, Kim J 2018 Carbon 133 78Google Scholar

    [93]

    Ye L, Wang P, Luo W J, Gong F, Liao L, Liu T D, Tong L, Zang J F, Xu J B, Hu W D 2017 Nano Energy 37 53Google Scholar

    [94]

    Guo N, Xiao L, Gong F, Luo M, Wang F, Jia Y, Chang H, Liu J, Li Q, Wu Y, Wang Y, Shan C, Xu Y, Zhou P, Hu W 2020 Adv. Science 7 1901637Google Scholar

  • [1] Zhang Sheng-Yuan, Xia Kang-Long, Zhang Mao-Lin, Bian Ang, Liu Zeng, Guo Yu-Feng, Tang Wei-Hua. Self-powered dual-mode UV detector based on GaN/(BA)2PbI4 heterojunction. Acta Physica Sinica, 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [2] Yi Zi-Qi, Wang Yan-Ming, Wang Shuo, Sui Xue, Shi Jia-Hui, Yang Yi-Han, Wang De-Yu, Feng Qiu-Ju, Sun Jing-Chang, Liang Hong-Wei. Performance of UV photodetector of mechanical exfoliation prepared PEDOT:PSS/β-Ga2O3 microsheet heterojunction. Acta Physica Sinica, 2024, 73(15): 157102. doi: 10.7498/aps.73.20240630
    [3] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [4] Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun. Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field. Acta Physica Sinica, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [5] Jiang Zhou, Jiang Xue, Zhao Ji-Jun. Electronic properties of two-dimensional kagome lattice based on transition metal phthalocyanine heterojunctions. Acta Physica Sinica, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [6] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [7] Ding Jun, Wen Li-Wei, Li Rui-Xue, Zhang Ying. Control of electric properties of silicene heterostructure by reversal of ferroelectric polarization. Acta Physica Sinica, 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [8] Guo Yue, Sun Yi-Ming, Song Wei-Dong. Narrowband near-ultraviolet photodetector fabricated from porous GaN/CuZnS heterojunction. Acta Physica Sinica, 2022, 71(21): 218501. doi: 10.7498/aps.71.20220990
    [9] Zhu Yu-Jie, Jiang Tao, Ye Xiao-Juan, Liu Chun-Sheng. Theoretical prediction of novel two-dimensional auxetic material SiGeS and its electronic and optical properties. Acta Physica Sinica, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [10] Hao Guo-Qiang, Zhang Rui, Zhang Wen-Jing, Chen Na, Ye Xiao-Jun, Li Hong-Bo. Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping. Acta Physica Sinica, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [11] Sun Ying-Hui, Mu Cong-Yan, Jiang Wen-Gui, Zhou Liang, Wang Rong-Ming. Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials. Acta Physica Sinica, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [12] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [13] Yao Wen-Qian, Sun Jian-Zhe, Chen Jian-Yi, Guo Yun-Long, Wu Bin, Liu Yun-Qi. Controllable preparation and photoelectric applications of two-dimensional in-plane and van der Waals heterostructures. Acta Physica Sinica, 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [14] Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong. Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures. Acta Physica Sinica, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [15] Zeng Zhou-Xiao-Song, Wang Xiao, Pan An-Lian. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [16] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [17] Ma Hao-Hao, Zhang Xian-Bin, Wei Xu-Yan, Cao Jia-Meng. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements. Acta Physica Sinica, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [18] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [19] Guo Li-Juan, Hu Ji-Song, Ma Xin-Guo, Xiang Ju. Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure. Acta Physica Sinica, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [20] Zhang Wei-Ying, Wu Xiao-Peng, Sun Li-Jie, Lin Bi-Xia, Fu Zhu-Xi. Study on the photovoltaic conversion of ZnO/Si heterojunction. Acta Physica Sinica, 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
Metrics
  • Abstract views:  14024
  • PDF Downloads:  581
  • Cited By: 0
Publishing process
  • Received Date:  13 August 2020
  • Accepted Date:  03 September 2020
  • Available Online:  08 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回
Baidu
map