搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维BeB2作为镁离子电池阳极材料的理论研究

李欣悦 高国翔 高强 刘春生 叶小娟

引用本文:
Citation:

二维BeB2作为镁离子电池阳极材料的理论研究

李欣悦, 高国翔, 高强, 刘春生, 叶小娟

Theoretical study of two-dimensional BeB2 monolayer as anode material for magnesium ion batteries

Li Xin-Yue, Gao Guo-Xiang, Gao Qiang, Liu Chun-Sheng, Ye Xiao-Juan
PDF
HTML
导出引用
  • 为了加快镁离子电池的开发与应用, 寻找合适的镁离子电池阳极材料势在必行. 此外, 具有较低摩尔质量的阳极材料有利于获得较高的理论存储容量. 因此, 本文采用基于密度泛函理论的第一性原理计算系统地研究了BeB2单层材料作为镁离子电池阳极的潜力. 计算结果表明, 基于声子谱检测, BeB2结构展现了优异的动力学稳定性. 此外, 从BeB2的能带结构可以看到清晰的狄拉克锥, 表明其具有良好的导电性能. BeB2可以稳定吸附镁离子, 并且镁离子在该材料上表现了较低的扩散势垒 (0.04 eV), 这意味着更快的充放电速率. 重要的是, BeB2展现了超高的理论容量 (5250 mA·h·g–1)、较低平均开路电压 (0.33 V)以及较小的体积膨胀 (2%). 此外, Mg离子在双层BeB2结构中的吸附能为–1.38 — –2.24 eV, 扩散势垒为0.134 — 0.84 eV. 综合以上性能, 我们相信BeB2可以作为一种优秀的镁离子电池阳极材料.
    Rechargeable lithium-ion batteries as the main energy storage equipment should possess high power density, excellent reversible capacity, and long cycle life. However, due to the high cost and dendrite growth of Li, searching for non-Li-ion batteries is urgent. Compared with lithium, magnesium has abundant resources, small ionic radius, and high energy density. Therefore, magnesium-ion batteries (MIBs) can serve as the next generation metal-ion batteries. Two-dimensional materials based on Be or B element acting as the anode of metal-ion batteries always exhibit high theoretical storage capacity. Using first-principles calculations, we systematically explore the potential of BeB2 as MIBs anode. The optimized BeB2 monolayer structure shown in Fig. (a) consists of two atomic layers, where each Be atom is coordinated with six B atoms, and each B atom is coordinated with three Be atoms.The lattice constants are a = b = 3.037 Å with a thickness of 0.554 Å. From the phonon spectrum calculations, the absence of imaginary modes indicates the dynamic stability of BeB2 monolayer. The presence of a Dirac cone further suggests the excellent conductivity (Fig.(b)). Three stable adsorption sites (Be1: top of Be atoms; Be2 and B2: bottom of Be and B atoms) are labeled in Fig. (a). Taking symmetry into account, we consider three pathways to evaluate the migration of Mg atom on BeB2 monolayer (Fig.(c)). The corresponding lowest diffusion energy barrier is 0.04 eV along Path III. The stable configuration with the maximum adsorption Mg concentration is shown in Fig.(d), which generates a theoretical capacity of 5250 mA·h·g–1. The calculated average open-circuit voltage is 0.33 V. Based on ab initio molecular dynamics simulations, the total energy of BeB2, with Mg adsorbed, fluctuates within a narrow range, suggesting that BeB2 can sustain structural stability after storing Mg at room temperature (Fig.(e)). Finally, for practical application, we investigate the adsorption and diffusion behavior of Mg on bilayer BeB2. Three configurations are considered: AA stacking (overlapping of Be atoms in upper layer with Be atoms in lower layer), AB stacking (overlapping of Be atoms in upper layer with B atoms in lower layer), and AC stacking (overlapping of Be atoms in upper layer with B—B bonds in lower layer). The most stable configuration is AB stacking (shown in Fig.(f)) with the interlayer spacing of 3.12 Å and the binding energy of –120.97 meV/atom. Comparing with the BeB2 monolayer structure, the adsorption energy of Mg is –2.24 eV for Be1, –1.38 eV for B5 site, and –1.90 eV for B4 site, while the lowest diffusion energy barrier is 0.13 eV along the path of B5-Be3-B5. Therefore, according to the above-mentioned properties, we believe that BeB2 monolayer can serve as an excellent MIBs anode material.
      通信作者: 叶小娟, yexj@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61974068)资助的课题.
      Corresponding author: Ye Xiao-Juan, yexj@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61974068).
    [1]

    Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad M I 2020 Renewable Sustainable Energy Rev. 119 109549Google Scholar

    [2]

    Ma Y, Doeff M M, Visco S J, Jonghe L C D 1993 J. Electrochem. Soc. 140 2726Google Scholar

    [3]

    Hwang J Y, Myung S T, Sun Y K 2017 Chem. Soc. Rev. 46 3529Google Scholar

    [4]

    Rajagopalan R, Tang Y G, Ji X B, Jia C K, Wang H Y 2020 Adv. Funct. Mater. 30 1909486Google Scholar

    [5]

    Lin J Y, Yu T, Han F J J, Yang G C 2020 Wiley Interdiscip. Rev. Comput. Mol. Sci. 10 e1473Google Scholar

    [6]

    Mortazavi B, Rahaman O, Ahzi S, Rabczuk T 2017 Appl. Mater. Today 8 60Google Scholar

    [7]

    Yeoh K H, Chew K H, Chu Y Z, Yoon T L, Rusi, Ong D S 2019 J. Appl. Phys. 126 125302Google Scholar

    [8]

    Ullah S, Denis P A, Sato F 2017 Appl. Mater. Today 9 333Google Scholar

    [9]

    Ye X J, Gao Q, Cao H B, Wang X H, Liu C S 2023 Appl. Phys. Lett. 122 223902Google Scholar

    [10]

    Wan M Q, Zhao S Q, Zhang Z Y, Zhou N G 2022 J. Phys. Chem. C 126 9642Google Scholar

    [11]

    Wu Y, Hou J 2022 Phys. Chem. Chem. Phys. 24 14953Google Scholar

    [12]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [13]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [14]

    Zhang G X, Tkatchenko A, Paier J, Appel H, Scheffler M 2011 Phys. Rev. Lett. 107 245501Google Scholar

    [15]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [16]

    Govind N, Petersen M, Fitzgerald G, King-Simith D 2003 Comput. Mater. Sci. 28 250Google Scholar

    [17]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [18]

    Gao Q, Ye X J, Liu C S 2023 Phys. Chem. Chem. Phys. 25 6519Google Scholar

    [19]

    Panigrahi P, Mishra S B, Hussain T, Nanda B. R. K, Ahuja Rajeev 2020 ACS Appl. Nano Mater. 3 9055Google Scholar

    [20]

    Xiao C, Tang X Q, Peng J F, Ding Y H 2021 Appl. Surf. Sci. 563 150278Google Scholar

    [21]

    Khan A A, Muhammad I, Ahmad R, Ahmad L 2021 Ionics 27 4819Google Scholar

    [22]

    Wu D H, Yang B C, Zhang S R, Ruckenstein E Chen H Y 2021 J. Colloid Interface Sci. 597 401Google Scholar

    [23]

    Shakerzadeh E, Kazemimoghadam F 2021 Appl. Surf. Sci. 538 148060Google Scholar

    [24]

    Xiong F Y, Jiang Y L, Cheng L, Yu R H, Tan S S, Tang C, Zuo C L, An Q Y, Zhao Y L, Gaumet J J, Mai L Q 2022 Interdiscip. Mater. 1 140Google Scholar

    [25]

    Zhang Z H, Song M J, Si C H, Cui W R, Wang Y 2023 eScience 3 100070Google Scholar

    [26]

    Malyi O. I, Tan T. L, Manzhos S 2013 J. Power Sources 233 341Google Scholar

    [27]

    Wang L, Welborn S S, Kumar H, Li M N, Wang Z Y, Shenoy V B, Detsi E 2019 Adv. Energy Mater. 9 1902086Google Scholar

    [28]

    Shao Y Y, Gu M, Li X Y, Nie Z M, Zuo P J, Li G S, Liu T B, Xiao J Cheng Y W, Wang C M, Zhang J G, Liu J 2014 Nano Lett. 14 255Google Scholar

    [29]

    God C, Bitschnau B, Kapper K, Lenardt C, Schmuck M , Mautner F, Koller S 2017 RSC Adv. 7 14168

    [30]

    Penki T R, Valurouthu G, Shivakumara S, Sethuraman V A, Munichandraiah N 2018 New J. Chem. 42 5996Google Scholar

  • 图 1  (a) BeB2单层结构的俯视图及侧视图, 红色框架展示了BeB2单层的初级原胞结构, h表示 BeB2单层的厚度; BeB2单层的声子谱(b)、能带结构(c)以及分态密度图(d)

    Fig. 1.  (a) Top and side views of BeB2 monolayer. Red frame represents the primary cell structure of BeB2, and h represents the thickness of BeB2 monolayer. (b) Phonon spectra, (c) electronic band structures, (d) partial density of states of BeB2 monolayer.

    图 2  BeB2表面所有可能的吸附点位

    Fig. 2.  All the possible adsorption sites of BeB2 monolayer.

    图 3  Mg2+吸附在 Be1位的差分电荷密度分布俯视图 (a)和侧视图 (b); BeB2单层(c)以及Mg2+吸附在Be1位的BeB2 (d)的分态密度图

    Fig. 3.  Top (a) and side (b) views of charge density difference for Mg2+ absorbed at Be1 site; partial density of states of BeB2 monolayer (c) and BeB2 with Mg2+ adsorbed at Be1 site (d).

    图 4  Mg2+在 BeB2表面的扩散路径俯视图, 分别对应路径 Ⅰ (a), II (c), Ⅲ (e); 对应路径的扩散势垒 路径Ⅰ (b), II (d), Ⅲ (f). 插图为 Mg2+扩散的侧视图

    Fig. 4.  (a), (c), (e) Top views of Mg2+ diffusion paths on BeB2 surface, corresponding to path Ⅰ, II, and Ⅲ, respectively; (b), (d), (e) diffusion barriers of path Ⅰ, II, and Ⅲ. Insets are side views of Mg2+ diffusion pathways.

    图 5  不同吸附浓度的MgxBeB2体系完全优化后的俯视图和侧视图 (a) MgBeB2; (b) Mg2BeB2; (c) Mg3BeB2

    Fig. 5.  Top and side views of different configurations after full optimization: (a) MgBeB2; (b) Mg2BeB2; (c) Mg3BeB2.

    图 6  (a) 平均吸附能随吸附浓度变化的曲线; (b) MgxBeB2形成能曲线; (c) MgBeB2, Mg2BeB2和 Mg3BeB2的ELF侧视图; (d) 吸附Mg2+的BeB2单层的开路电压; (e) Mg3BeB2在 300 K条件下分子动力学模拟 10 ps 后的能量曲线, 插图为模拟结束时体系的俯视图及侧视图

    Fig. 6.  (a) Variation of average adsorption energy with the concentration of adsorbed Mg; (b) formation energy of MgxBeB2; (c) side views of electron function localization for MgBeB2, Mg2BeB2 and Mg3BeB2, respectively; (d) OCV of BeB2 monolayer with different Mg concentration; (e) total energy variation of Mg3BeB2 during ab initio molecular dynamics at 300 K. Inset exhibits the top and side snapshots at the end of 10 ps.

    图 7  (a) AA, (b) AB和(c) AC堆叠的双层BeB2的俯视图和侧视图

    Fig. 7.  Top and side views of bilayer BeB2 with stacking of (a) AA, (b) AB, and (c) AC.

    图 8  (a) AB堆叠的双层BeB2层间结合能随双分子层间距的变化曲线; (b) AB堆叠的双层BeB2所有可能的吸附点位

    Fig. 8.  (a) The variation of interlayer binding energy of bilayer BeB2 in AB stacking mode with interlayer spacing; (b) all possible adsorption sites of bilayer BeB2 in AB stacking mode.

    图 9  双层BeB2各层的扩散路径俯视图, 分别对应上层 (a)、中层(c)、下层(e), 以及对应路径的扩散势垒: 上层(b)、中层(d)、下层(f)

    Fig. 9.  Top view of diffusion paths in each region of bilayer BeB2 in AB stacking, corresponding to the upper layer (a), middle layer (c), and lower layer (e); the diffusion barriers corresponding to the paths: upper layer (b), middle layer (d), and lower layer (f).

    表 1  Mg2+在 BeB2表面上不同吸附点位的吸附能及转移电荷数量

    Table 1.  Adsorption energy at different sites and the charge transfers of Mg2+ on BeB2 monolayer.

    Adsorption site Eads/eV ΔQ/e
    Be1 –2.67 0.29
    Be2 –2.24 0.20
    B2 –2.16 0.18
    下载: 导出CSV

    表 2  几种镁离子电池阳极材料与BeB2的性能对比 (*标识为实验数据)

    Table 2.  Comparison of several two-dimensional materials with BeB2 as MIBs anode (*experimental results).

    阳极材料 吸附能/eV 扩散势垒/eV 理论容量/(mA·h·g–1) 平均开路电压/V 体积膨胀率/%
    BeB2 –2.67 0.04 5250 0.33 2
    β12 borophene[6] –0.696 0.97 2480
    χ3 borophene[6] –0.199 2400
    Be2B[9] –0.7 0.1 7436 0.29 0.3
    α-beryllene[18] –0.24 0.099 5956 0.24 –0.18
    Si2BN[19] –1.22 0.08 648 0.67
    BSi[20] –2.34 0.86 2749 0.84
    Arsenene[21] 2.48 0.21 1429 0.83 <16
    B-MoS2[22] –0.024 0.6 921 0.154 2.67
    B40[23] 0.20 744 5.5
    *TiP2O7[24] 0.62 72* 2.4* 3.2*
    *Ge57Bi43[25] 847.5* 0.32—0.35*
    Ge[26] 0.7 1476 0.241 –178
    *Mg2Ga5[27] 290* 0.01—0.7*
    *Nano-Bi[28] 350* 0—0.25*
    *石墨[29] 22* 0.15*
    *RGO/Bi[30] 372* 0.25*
    下载: 导出CSV
    Baidu
  • [1]

    Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad M I 2020 Renewable Sustainable Energy Rev. 119 109549Google Scholar

    [2]

    Ma Y, Doeff M M, Visco S J, Jonghe L C D 1993 J. Electrochem. Soc. 140 2726Google Scholar

    [3]

    Hwang J Y, Myung S T, Sun Y K 2017 Chem. Soc. Rev. 46 3529Google Scholar

    [4]

    Rajagopalan R, Tang Y G, Ji X B, Jia C K, Wang H Y 2020 Adv. Funct. Mater. 30 1909486Google Scholar

    [5]

    Lin J Y, Yu T, Han F J J, Yang G C 2020 Wiley Interdiscip. Rev. Comput. Mol. Sci. 10 e1473Google Scholar

    [6]

    Mortazavi B, Rahaman O, Ahzi S, Rabczuk T 2017 Appl. Mater. Today 8 60Google Scholar

    [7]

    Yeoh K H, Chew K H, Chu Y Z, Yoon T L, Rusi, Ong D S 2019 J. Appl. Phys. 126 125302Google Scholar

    [8]

    Ullah S, Denis P A, Sato F 2017 Appl. Mater. Today 9 333Google Scholar

    [9]

    Ye X J, Gao Q, Cao H B, Wang X H, Liu C S 2023 Appl. Phys. Lett. 122 223902Google Scholar

    [10]

    Wan M Q, Zhao S Q, Zhang Z Y, Zhou N G 2022 J. Phys. Chem. C 126 9642Google Scholar

    [11]

    Wu Y, Hou J 2022 Phys. Chem. Chem. Phys. 24 14953Google Scholar

    [12]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [13]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [14]

    Zhang G X, Tkatchenko A, Paier J, Appel H, Scheffler M 2011 Phys. Rev. Lett. 107 245501Google Scholar

    [15]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [16]

    Govind N, Petersen M, Fitzgerald G, King-Simith D 2003 Comput. Mater. Sci. 28 250Google Scholar

    [17]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [18]

    Gao Q, Ye X J, Liu C S 2023 Phys. Chem. Chem. Phys. 25 6519Google Scholar

    [19]

    Panigrahi P, Mishra S B, Hussain T, Nanda B. R. K, Ahuja Rajeev 2020 ACS Appl. Nano Mater. 3 9055Google Scholar

    [20]

    Xiao C, Tang X Q, Peng J F, Ding Y H 2021 Appl. Surf. Sci. 563 150278Google Scholar

    [21]

    Khan A A, Muhammad I, Ahmad R, Ahmad L 2021 Ionics 27 4819Google Scholar

    [22]

    Wu D H, Yang B C, Zhang S R, Ruckenstein E Chen H Y 2021 J. Colloid Interface Sci. 597 401Google Scholar

    [23]

    Shakerzadeh E, Kazemimoghadam F 2021 Appl. Surf. Sci. 538 148060Google Scholar

    [24]

    Xiong F Y, Jiang Y L, Cheng L, Yu R H, Tan S S, Tang C, Zuo C L, An Q Y, Zhao Y L, Gaumet J J, Mai L Q 2022 Interdiscip. Mater. 1 140Google Scholar

    [25]

    Zhang Z H, Song M J, Si C H, Cui W R, Wang Y 2023 eScience 3 100070Google Scholar

    [26]

    Malyi O. I, Tan T. L, Manzhos S 2013 J. Power Sources 233 341Google Scholar

    [27]

    Wang L, Welborn S S, Kumar H, Li M N, Wang Z Y, Shenoy V B, Detsi E 2019 Adv. Energy Mater. 9 1902086Google Scholar

    [28]

    Shao Y Y, Gu M, Li X Y, Nie Z M, Zuo P J, Li G S, Liu T B, Xiao J Cheng Y W, Wang C M, Zhang J G, Liu J 2014 Nano Lett. 14 255Google Scholar

    [29]

    God C, Bitschnau B, Kapper K, Lenardt C, Schmuck M , Mautner F, Koller S 2017 RSC Adv. 7 14168

    [30]

    Penki T R, Valurouthu G, Shivakumara S, Sethuraman V A, Munichandraiah N 2018 New J. Chem. 42 5996Google Scholar

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测.  , 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 张磊, 陈起航, 曹硕, 钱萍. 基于第一性原理计算单层IrSCl和IrSI的载流子迁移率.  , 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [3] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算.  , 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究.  , 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [5] 宋蕊, 王必利, 冯凯, 王黎, 梁丹丹. 二维VOBr2单层的结构畸变及其磁性和铁电性.  , 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [6] 陈思钰, 叶小娟, 刘春生. 二维锗醚在钠离子电池方面的理论研究.  , 2022, 71(22): 228202. doi: 10.7498/aps.71.20220572
    [7] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选.  , 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [8] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究.  , 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [9] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算.  , 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [10] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算.  , 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [11] 宋蕊. 二维VOBr2单层的结构畸变及其磁性和铁电性研究.  , 2021, (): . doi: 10.7498/aps.70.20211516
    [12] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究.  , 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [13] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究.  , 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [14] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [15] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究.  , 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [16] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析.  , 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [17] 张薇, 陈凯彬, 陈震东. Cr二维单层薄片中Jahn-Teller效应的第一性原理研究.  , 2018, 67(23): 237301. doi: 10.7498/aps.67.20181669
    [18] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算.  , 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [19] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究.  , 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究.  , 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  1996
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 修回日期:  2024-03-25
  • 上网日期:  2024-04-16
  • 刊出日期:  2024-06-05

/

返回文章
返回
Baidu
map