搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究

冯秋菊 李芳 李彤彤 李昀铮 石博 李梦轲 梁红伟

引用本文:
Citation:

外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究

冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟

Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method

Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei
PDF
导出引用
  • 利用外电场辅助化学气相沉积(CVD)方法,在蓝宝石衬底上制备出了由三组生长方向构成的网格状β-Ga2O3纳米线.研究了不同外加电压大小对β-Ga2O3纳米线表面形貌、晶体结构以及光学特性的影响.结果表明:外加电压的大小对样品的表面形貌有着非常大的影响,有外加电场作用时生长的β-Ga2O3纳米线取向性开始变好,只出现了由三组不同生长方向构成的网格状β-Ga2O3纳米线;并且随着外加电压的增加,纳米线分布变得更加密集、长度明显增长.此外,采用这种外电场辅助的CVD方法可以明显改善样品的结晶和光学质量.
    Gallium oxide (Ga2O3) has five crystalline polymorphs, i.e. corundum (α-phase), monoclinic (β-phase), spinel (γ-phase), bixbite (δ-phase) and orthorhombic (ε-phase). Among these phases, the monoclinic structured β-Ga2O3 is the most stable form, and is a ultraviolet (UV) transparent semiconductor with a wide band gap of 4.9 eV. It is a promising candidate for applications in UV transparent electrodes, solar-blind photodetectors, gas sensors and optoelectronic devices. In recent years, one-dimensional (1D) nanoscale semiconductor structures, such as nanowires, nanobelts, and nanorods, have attracted considerable attention due to their interesting fundamental properties and potential applications in nanoscale opto-electronic devices.Numerous efforts have been made to fabricate such devices in 1D nanostructures such as nanowires and nanorods. Comparing with the thin film form, the device performance in the 1D form is significantly enhanced as the surface-to-volume ratio increases. In order to realize β-Ga2O3 based nano-optoelectronic devices, it is necessary to obtain controlled-synthesis and the high-quality β-Ga2O3 nanomaterials. According to the present difficulties in synthesizing β-Ga2O3 nanomaterials, in this paper, the grid-like β-Ga2O3 nanowires are prepared on sapphire substrates via electric field assisted chemical vapor deposition method.High-purity metallic Ga (99.99%) is used as Ga vapor source. High-purity Ar gas is used as carrier gas. The flow rate of high-purity Ar carrier gas is controlled at 200 sccm. Then, oxygen reactant gas with a flow rate of 2 sccm enters into the system. The temperature is kept at 900℃ for 20 min. The effect of the external electric voltage on the surface morphology, crystal structure and optical properties of β-Ga2O3 nanowires are investigated. It is found that the external electric voltage has a great influence on the surface morphology of the sample. The orientation of the β-Ga2O3 nanowires grown under the action of an applied electric field begins to improve. Only a grid composed of three different growth directions appears. And with the increase of applied voltage, the distribution of nanowires becomes denser and the length increases significantly. In addition, it is found that the chemical vapor deposition method assisted by this external electric field can significantly improve the crystallization and optical quality of the samples.
      通信作者: 冯秋菊, qjfeng@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61574026,11405017)和辽宁省自然科学基金(批准号:201602453)资助的课题.
      Corresponding author: Feng Qiu-Ju, qjfeng@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574026, 11405017) and the Natural Science Foundation of Liaoning Province, China (Grant No. 201602453).
    [1]

    Ma H L, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322 (in Chinese)[马海林, 苏庆, 兰伟, 刘雪芹 2008 57 7322]

    [2]

    Feng Q J, Liu J Y, Yang Y Q, Pan D Z, Xing Y, Shi X C, Xia X C, Liang H W 2016 J. Alloys Compd. 687 964

    [3]

    Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972

    [4]

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701 (in Chinese)[马海林, 苏庆 2014 63 116701]

    [5]

    Hegde M, Hosein I D, Radovanovic P V 2015 J. Phys. Chem. C 119 17450

    [6]

    Kumar R, Dubey P K, Singh R K, Vaz A R, Moshkalev S A 2016 RSC Adv. 6 17669

    [7]

    Miller D R, Akbar S A, Morris P A 2017 Nano-Micro Lett. 9 33

    [8]

    Gu Y Y, Su Y J, Chen D, Geng H J, Li Z L, Zhang L Y, Zhang Y F 2014 Cryst. Eng. Comm. 16 9185

    [9]

    Tang C M, Liao X Y, Zhong W J, Yu H Y, Liu Z W 2017 RSC Adv. 7 6439

    [10]

    Peng M Z, Zheng X H, Ma Z G, Chen H, Liu S J, He Y F, Li M L 2018 Sens. Actuators, B 256 367

    [11]

    Li Y W, Stoica V A, Sun K, Liu W, Endicott L, Walrath J C, Chang A S, Lin Y H, Pipe K P, Goldman R S, Uher C, Clarke R 2014 Appl. Phys. Lett. 105 201904

    [12]

    Tsivion D, Schvartzman M, Popovitz B R, Huth P V, Joselevich E 2011 Science 333 1003

    [13]

    Lee S A, Hwang J Y, Kim J P, Jeong S Y, Cho C R 2006 Appl. Phys. Lett. 89 182906

    [14]

    Kang B K, Mang S R, Lim H D, Song K M, Song Y H, Go D H, Jung M K, Senthil K, Yoon D H 2014 Mater. Chem. Phys. 147 178

    [15]

    Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001

    [16]

    Jangir R, Porwal S, Tiwari P, Mondal P, Rai S K, Srivastava A K, Bhaumik I, Ganguli T 2016 AIP Adv. 6 035120

    [17]

    Lee S Y, Choi K H, Kang H C 2016 Mater. Lett. 176 213

    [18]

    Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Phys. Mater. C 3 4678

    [19]

    Terasako T, Kawasaki Y, Yagi M 2016 Thin Solid Films 620 23

    [20]

    Smith P A, Nordquist C D, Jackson T N, Mayer T S 2000 Appl. Phys. Lett. 77 1399

    [21]

    Kumar M S, Lee S H, Kim T Y, Kim T H, Song S M, Yang J W, Nahm K S, Suh E K 2003 Solid-State Electron. 47 2075

    [22]

    Zong X, Zhu R 2014 Nanoscale 6 12732

    [23]

    Kumar S, Sarau G, Tessarek C, Bashouti M Y, Hähnel A, Christiansen S, Singh R 2014 J. Phys. D: Appl. Phys. 47 435101

  • [1]

    Ma H L, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322 (in Chinese)[马海林, 苏庆, 兰伟, 刘雪芹 2008 57 7322]

    [2]

    Feng Q J, Liu J Y, Yang Y Q, Pan D Z, Xing Y, Shi X C, Xia X C, Liang H W 2016 J. Alloys Compd. 687 964

    [3]

    Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972

    [4]

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701 (in Chinese)[马海林, 苏庆 2014 63 116701]

    [5]

    Hegde M, Hosein I D, Radovanovic P V 2015 J. Phys. Chem. C 119 17450

    [6]

    Kumar R, Dubey P K, Singh R K, Vaz A R, Moshkalev S A 2016 RSC Adv. 6 17669

    [7]

    Miller D R, Akbar S A, Morris P A 2017 Nano-Micro Lett. 9 33

    [8]

    Gu Y Y, Su Y J, Chen D, Geng H J, Li Z L, Zhang L Y, Zhang Y F 2014 Cryst. Eng. Comm. 16 9185

    [9]

    Tang C M, Liao X Y, Zhong W J, Yu H Y, Liu Z W 2017 RSC Adv. 7 6439

    [10]

    Peng M Z, Zheng X H, Ma Z G, Chen H, Liu S J, He Y F, Li M L 2018 Sens. Actuators, B 256 367

    [11]

    Li Y W, Stoica V A, Sun K, Liu W, Endicott L, Walrath J C, Chang A S, Lin Y H, Pipe K P, Goldman R S, Uher C, Clarke R 2014 Appl. Phys. Lett. 105 201904

    [12]

    Tsivion D, Schvartzman M, Popovitz B R, Huth P V, Joselevich E 2011 Science 333 1003

    [13]

    Lee S A, Hwang J Y, Kim J P, Jeong S Y, Cho C R 2006 Appl. Phys. Lett. 89 182906

    [14]

    Kang B K, Mang S R, Lim H D, Song K M, Song Y H, Go D H, Jung M K, Senthil K, Yoon D H 2014 Mater. Chem. Phys. 147 178

    [15]

    Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001

    [16]

    Jangir R, Porwal S, Tiwari P, Mondal P, Rai S K, Srivastava A K, Bhaumik I, Ganguli T 2016 AIP Adv. 6 035120

    [17]

    Lee S Y, Choi K H, Kang H C 2016 Mater. Lett. 176 213

    [18]

    Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Phys. Mater. C 3 4678

    [19]

    Terasako T, Kawasaki Y, Yagi M 2016 Thin Solid Films 620 23

    [20]

    Smith P A, Nordquist C D, Jackson T N, Mayer T S 2000 Appl. Phys. Lett. 77 1399

    [21]

    Kumar M S, Lee S H, Kim T Y, Kim T H, Song S M, Yang J W, Nahm K S, Suh E K 2003 Solid-State Electron. 47 2075

    [22]

    Zong X, Zhu R 2014 Nanoscale 6 12732

    [23]

    Kumar S, Sarau G, Tessarek C, Bashouti M Y, Hähnel A, Christiansen S, Singh R 2014 J. Phys. D: Appl. Phys. 47 435101

  • [1] 齐凯, 朱星光, 王军, 夏国栋. 外电场作用下纳米结构表面的固-液界面传热特性.  , 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [2] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [3] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性.  , 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [4] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱.  , 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [5] 赵博硕, 强晓永, 秦岳, 胡明. 氧化钨纳米线气敏传感器的制备及其室温NO2敏感特性.  , 2018, 67(5): 058101. doi: 10.7498/aps.67.20172236
    [6] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响.  , 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [7] 郑树文, 范广涵, 何苗, 赵灵智. W掺杂对β-Ga2O3导电性能影响的理论研究.  , 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [8] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响.  , 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [9] 秦玉香, 刘凯轩, 刘长雨, 孙学斌. 钒掺杂W18O49纳米线的室温p型电导与NO2敏感性能.  , 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [10] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究.  , 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [11] 徐国亮, 刘雪峰, 夏要争, 张现周, 刘玉芳. 外电场作用下Si2O分子的激发特性.  , 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [12] 韩道丽, 赵元黎, 赵海波, 宋天福, 梁二军. 化学气相沉积法制备定向碳纳米管阵列.  , 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [13] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长.  , 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [14] 曾春来, 唐东升, 刘星辉, 海 阔, 羊 亿, 袁华军, 解思深. 化学气相沉积法中SnO2一维纳米结构的控制生长.  , 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [15] 胡利勤, 林志贤, 郭太良, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 取向和非取向In2O3纳米线的场发射研究.  , 2006, 55(11): 6136-6140. doi: 10.7498/aps.55.6136
    [16] 胡海宁, 陈京兰, 吴光恒, 陈丽婕, 刘何燕, 李养贤, 曲静萍. 电化学沉积Fe与FePd纳米线阵列的磁性.  , 2005, 54(9): 4370-4373. doi: 10.7498/aps.54.4370
    [17] 李志杰, 潘学铃, 孙维民, 曲家惠, 王 福. Al3O3N纳米线的制备与表征.  , 2005, 54(1): 450-453. doi: 10.7498/aps.54.450
    [18] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼.  , 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [19] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响.  , 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱.  , 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  6275
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-25
  • 修回日期:  2018-07-19
  • 刊出日期:  2018-11-05

/

返回文章
返回
Baidu
map