-
采用基于格林函数的GW方法计算发现: 孤立二维单层硒化铟(InSe)和碲化铟(InTe)具有吸收可见光的理想带隙, 高的电子迁移率以及适合光解水的电子能带结构, 电子自旋轨道耦合(SOC)效应使单层InTe从间接带隙半导体转变为直接带隙半导体. 在准粒子能级计算的基础之上, 通过求解Bethe-Salpeter方程 (BSE)发现, 孤立单层InSe和InTe的激子结合能远大于常温下激子的自发解离能. 另一方面, 实际应用的二维半导体为了维持其力学稳定性, 大都需要依附在衬底上, 另外, 不同实验室样品自身原子层厚度也各异, 这些因素必然改变二维半导体的介电环境. 进一步的计算发现, 二维InSe和InTe的激子结合能随自身原子层厚度以及衬底厚度的变大而减小, 这说明可以通过调控二维半导体自身原子层以及衬底厚度的方式实现对激子结合能的精确调控, 本文结果能够为将来精确调控二维InSe和InTe的激子结合能大小提供重要的理论依据.The calculations using GW method based on Green’s function show that two-dimensional monolayer InSe and InTe have desired electronic band gaps for absorbing visible light, high electron mobilities, and suitable electronic band structures for water splitting, and that the spin orbit coupling (SOC) leads to an indirect-to -direct band gap transition for monolayer InTe. On the basis of quasi-particle energy levels, the calculations via solving Bethe-Salpter equation (BSE) show that the exciton binding energy of isolated monolayer InSe and InTe are much higher than that of the dissociation energy of exciton at room temperature. On the other hand, two-dimensional semiconductors in laboratory are often supported by substrates for mechanical stability, and the atomic thickness values of two-dimensional semiconductors are also various in different experiments. These factors will change the dielectric environments of two-dimensional semiconductor, and the further calculations show that the exciton binding energy of InSe and InTe decrease with the increase of the thickness of InSe and InTe and also the thickness of their substrates, also revealing that the exciton binding energy can be accurately controlled by engineering the thickness of two-dimensional semiconductors and the substrates. Our results provide important theoretical basis for accurately controlling the binding energy of two-dimensional InSe and InTe.
-
Keywords:
- two-dimensional material /
- electronic structure /
- screening effects /
- exciton
[1] Dai M, Gao C, Nie Q, Wang Q J, Lin, Y, F, Chu J, Li W 2022 Adv. Mater. Technol. 7 2200321Google Scholar
[2] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patanè A, Eaves L, Grigorieva I V, Fal’ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar
[3] Li Z Y, Cheng H Y, Kung S H, Yao H C, Inbaraj C R P, Sankar R, Ou M N, Chen Y F, Lee C C, Lin K H 2023 Nanomaterials 13 750Google Scholar
[4] Feng W, Zhou X, Tian W Q, Zheng W, Hu P 2015 Phys. Chem. Chem. Phys. 17 3653Google Scholar
[5] Mudd G W, Svatek S A, Hague L, Makarovsky O, Kudrynskyi Z R, Mellor C J, Beton P H, Eaves L, Novoselov K S, Kovalyuk Z D, Vdovin E E, Marsden A J, Wilson N R, Patane A 2015 Adv. Mater. 27 3760Google Scholar
[6] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟 2020 69 157302Google Scholar
Zhang F, Jia L Q, Sun X T, Dai X Q, Huang Q X, Li W 2020 Acta Phys. Sin. 69 157302Google Scholar
[7] Mudd G W, Svatek S A, Ren T, Patanè A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R, Dmitriev A I 2013 Adv. Mater. 25 5714Google Scholar
[8] Henck H, Pierucci D, Zribi J, Bisti F, Papalazarou E, Girard J C, Chaste J., Bertran F, Fèvre P L, Sirotti F, Perfetti L, Giorgetti C, Shukla A, Rault J E, Ouerghi A 2019 Phys. Rev. Mater. 3 034004Google Scholar
[9] Lei S, Ge L, Najmaei S, George A, Kappera R, Lou J, Chhowalla M, Yamaguchi H, Gupta G, Vajtai R, Mohite A D, Ajayan P M 2014 ACS Nano 8 1263Google Scholar
[10] Zhou J, Shi J, Zeng Q, Chen Y, Niu L, Liu F, Yu T, Suenaga Kazu, Liu X, Lin J, Liu Z 2018 2D Mater. 5 025019Google Scholar
[11] Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F, Chen Y T, Gao Xuan P A 2015 Nano Lett. 156 3815Google Scholar
[12] Lauth J, Gorris F E S, Khoshkhoo M S, Chassé T, Friedrich W, Lebedeva V, Meyer A, Klinke C, Kornowski A, Scheele M, Weller H 2016 Chem. Mater. 28 1728Google Scholar
[13] 范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar
Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar
[14] Pal S, Bose D N 1996 Solid State Commun. 97 725Google Scholar
[15] Zólyomi V, Drummond N D, Falko V I 2014 Phys. Rev. B 89 205416Google Scholar
[16] Jain M, Chelikowsky J R, Louie S, G, 2011 Phys. Rev. Lett. 107 216806Google Scholar
[17] Ma H, Feng J, Jin F, Wei M, Liu C, Ma Y 2018 Nanoscale 10 15624Google Scholar
[18] Yi Z, Wu M, Pang Y, Jia R, Xu R R 2021 Appl. Surf. Sci. 567 150842Google Scholar
[19] Klots A R, Newaz A K M, Wang B, Prasai D, Krzyzanowska H, Lin Junhao, Caudel D, Ghimire N J, Yan J, Ivanov B L, Velizhanin K A, Burger A, Mandrus D G, Tolk N H, Pantelides S T, Bolotin K I 2014 Sci. Rep. 4 6608Google Scholar
[20] Thygesen K S 2017 2D Mater. 4 022004Google Scholar
[21] Jiang Y, Chen S, Zheng W, Zheng B, Pan A 2021 Light-Sci. Appl. 10 72Google Scholar
[22] Qiu, D. Y. Jornada F da H, Louie S G 2013 Phys. Rev. Lett. 111 216805Google Scholar
[23] Komsa, H P, Krasheninnikov A V 2012 Phys. Rev. B 86 241201(RGoogle Scholar
[24] Shi H L, Pan H, Zhang Y W, Yakobson B I 2013 Phys. Rev. B 87 155304Google Scholar
[25] Qiu D Y, Felipe H da J, Louie, S G 2017 Nano Lett. 17 4706Google Scholar
[26] Raja A, Chaves A, Yu J, Arefe G, Hill Heather M, Rigosi Albert F, Berkelbach Timothy C, Nagler P, Schüller C, Korn T, Nuckolls C, Hone J, Brus Louis E, Heinz Tony F, Reichman David R, Chernikov A 2017 Nat. Commun. 8 15251Google Scholar
[27] Ugeda Miguel M, Bradley Aaron J, Shi S F, Jornada Felipe H da, Zhang Y, Qiu Diana Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie Steven G, Crommie Michael F 2014 Nat. Mater. 13 1091Google Scholar
[28] Enkovaara J, Rostgaard C, Mortensen J J, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen H A, Kristoffersen H H, Kuisma M, Larsen A H, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses P G, Ojanen J, Olsen T, Petzold V, Romero N A, Stausholm-Møller J, Strange M, Tritsaris G A, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen G K H, Nieminen R M, Nørskov J K, Puska M, Rantala T T, Schiøtz J, Thygesen K S, Jacobsen K W 2010 J. Phys. Condens. Mater. 22 253202Google Scholar
[29] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[30] Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865Google Scholar
[31] Babaie-Kafaki S, Aminifard Z 2019 Numer. Algorithms 82 1345Google Scholar
[32] Hüser F, Olsen T, Thygesen K S 2013 Phys. Rev. B 87 235132Google Scholar
[33] Yan J, Mortensen J J, Jacobsen K W, Thygesen K S 2011 Phys. Rev. B 83 245122Google Scholar
[34] Yi Z, Ma Y, Zheng Y, Duan Y, Li H 2019 Adv. Mater. Interfaces 6 1801175Google Scholar
[35] Rozzi C A, Varsano D, Marini A, Gross E K U, Rubio A 2006 Phys. Rev. B 73 205119Google Scholar
[36] Smail-Beigi S 2006 Phys. Rev. B 73 233103Google Scholar
[37] Rasmussen F A, Schmidt P S, Winther K T, Thygesen K S 2016 Phys. Rev. B 94 155406Google Scholar
[38] Olsen T 2016 Phys. Rev. B 94 235106Google Scholar
[39] Tiago M L, Ismail-Beigi S, Louie S G 2004 Phys. Rev. B 69 125212Google Scholar
[40] Klimeš J, Kaltak M, Kresse G 2014 Phys. Rev. B 90 075125Google Scholar
[41] Haastrup S, Strange Mikke, Pandey M, Deilmann T, Schmidt Per S, Hinsche Nicki F, Gjerding Morten N, Torelli D, Larsen Peter M, Riis-Jensen Anders C 2018 2D Mater. 5 042002Google Scholar
[42] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601Google Scholar
[43] 隋国民, 严桂俊, 杨光, 张宝, 冯亚青 2022 71 208801Google Scholar
Sui G M, Yan G J, Yang G, Zhang B, Feng Y Q 2022 Acta Phys. Sin. 71 208801Google Scholar
[44] Andersen K, Latini S, Thygesen K S 2015 Nano Lett. 15 4616Google Scholar
[45] Pandey T, Parker David S, Lindsay L 2017 Nanotechnology 28 455706Google Scholar
[46] Pang Y, Wu M, Zhang J, Yi Z 2021 J. Phys. Chem. C 125 3027Google Scholar
-
表 1 InSe和InTe导带和价带带边电子和空穴的有效质量
Table 1. The effective masses of electrons and holes of conduction and valence band edges for InSe and InTe.
n (InSe/InTe) 1 5 10 20 30 Eb (InSe)/eV 0.419 0.350 0.342 0.338 0.337 Eb (InTe)/eV 0.294 0.244 0.237 0.235 0.234 表 2 不同原子层厚度InSe以及InTe放置在50个原子层厚度h-BN衬底上时的激子结合能
Table 2. The exciton binding energies for different atomic thicknesses of InSe and InTe on h-BN substrate with 50 atomic layer thickness.
n (InSe/InTe) 1 5 10 20 30 Eb (InSe)/eV 0.419 0.350 0.342 0.338 0.337 Eb (InTe)/eV 0.294 0.244 0.237 0.235 0.234 -
[1] Dai M, Gao C, Nie Q, Wang Q J, Lin, Y, F, Chu J, Li W 2022 Adv. Mater. Technol. 7 2200321Google Scholar
[2] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patanè A, Eaves L, Grigorieva I V, Fal’ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar
[3] Li Z Y, Cheng H Y, Kung S H, Yao H C, Inbaraj C R P, Sankar R, Ou M N, Chen Y F, Lee C C, Lin K H 2023 Nanomaterials 13 750Google Scholar
[4] Feng W, Zhou X, Tian W Q, Zheng W, Hu P 2015 Phys. Chem. Chem. Phys. 17 3653Google Scholar
[5] Mudd G W, Svatek S A, Hague L, Makarovsky O, Kudrynskyi Z R, Mellor C J, Beton P H, Eaves L, Novoselov K S, Kovalyuk Z D, Vdovin E E, Marsden A J, Wilson N R, Patane A 2015 Adv. Mater. 27 3760Google Scholar
[6] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟 2020 69 157302Google Scholar
Zhang F, Jia L Q, Sun X T, Dai X Q, Huang Q X, Li W 2020 Acta Phys. Sin. 69 157302Google Scholar
[7] Mudd G W, Svatek S A, Ren T, Patanè A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R, Dmitriev A I 2013 Adv. Mater. 25 5714Google Scholar
[8] Henck H, Pierucci D, Zribi J, Bisti F, Papalazarou E, Girard J C, Chaste J., Bertran F, Fèvre P L, Sirotti F, Perfetti L, Giorgetti C, Shukla A, Rault J E, Ouerghi A 2019 Phys. Rev. Mater. 3 034004Google Scholar
[9] Lei S, Ge L, Najmaei S, George A, Kappera R, Lou J, Chhowalla M, Yamaguchi H, Gupta G, Vajtai R, Mohite A D, Ajayan P M 2014 ACS Nano 8 1263Google Scholar
[10] Zhou J, Shi J, Zeng Q, Chen Y, Niu L, Liu F, Yu T, Suenaga Kazu, Liu X, Lin J, Liu Z 2018 2D Mater. 5 025019Google Scholar
[11] Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F, Chen Y T, Gao Xuan P A 2015 Nano Lett. 156 3815Google Scholar
[12] Lauth J, Gorris F E S, Khoshkhoo M S, Chassé T, Friedrich W, Lebedeva V, Meyer A, Klinke C, Kornowski A, Scheele M, Weller H 2016 Chem. Mater. 28 1728Google Scholar
[13] 范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar
Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar
[14] Pal S, Bose D N 1996 Solid State Commun. 97 725Google Scholar
[15] Zólyomi V, Drummond N D, Falko V I 2014 Phys. Rev. B 89 205416Google Scholar
[16] Jain M, Chelikowsky J R, Louie S, G, 2011 Phys. Rev. Lett. 107 216806Google Scholar
[17] Ma H, Feng J, Jin F, Wei M, Liu C, Ma Y 2018 Nanoscale 10 15624Google Scholar
[18] Yi Z, Wu M, Pang Y, Jia R, Xu R R 2021 Appl. Surf. Sci. 567 150842Google Scholar
[19] Klots A R, Newaz A K M, Wang B, Prasai D, Krzyzanowska H, Lin Junhao, Caudel D, Ghimire N J, Yan J, Ivanov B L, Velizhanin K A, Burger A, Mandrus D G, Tolk N H, Pantelides S T, Bolotin K I 2014 Sci. Rep. 4 6608Google Scholar
[20] Thygesen K S 2017 2D Mater. 4 022004Google Scholar
[21] Jiang Y, Chen S, Zheng W, Zheng B, Pan A 2021 Light-Sci. Appl. 10 72Google Scholar
[22] Qiu, D. Y. Jornada F da H, Louie S G 2013 Phys. Rev. Lett. 111 216805Google Scholar
[23] Komsa, H P, Krasheninnikov A V 2012 Phys. Rev. B 86 241201(RGoogle Scholar
[24] Shi H L, Pan H, Zhang Y W, Yakobson B I 2013 Phys. Rev. B 87 155304Google Scholar
[25] Qiu D Y, Felipe H da J, Louie, S G 2017 Nano Lett. 17 4706Google Scholar
[26] Raja A, Chaves A, Yu J, Arefe G, Hill Heather M, Rigosi Albert F, Berkelbach Timothy C, Nagler P, Schüller C, Korn T, Nuckolls C, Hone J, Brus Louis E, Heinz Tony F, Reichman David R, Chernikov A 2017 Nat. Commun. 8 15251Google Scholar
[27] Ugeda Miguel M, Bradley Aaron J, Shi S F, Jornada Felipe H da, Zhang Y, Qiu Diana Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie Steven G, Crommie Michael F 2014 Nat. Mater. 13 1091Google Scholar
[28] Enkovaara J, Rostgaard C, Mortensen J J, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen H A, Kristoffersen H H, Kuisma M, Larsen A H, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses P G, Ojanen J, Olsen T, Petzold V, Romero N A, Stausholm-Møller J, Strange M, Tritsaris G A, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen G K H, Nieminen R M, Nørskov J K, Puska M, Rantala T T, Schiøtz J, Thygesen K S, Jacobsen K W 2010 J. Phys. Condens. Mater. 22 253202Google Scholar
[29] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[30] Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865Google Scholar
[31] Babaie-Kafaki S, Aminifard Z 2019 Numer. Algorithms 82 1345Google Scholar
[32] Hüser F, Olsen T, Thygesen K S 2013 Phys. Rev. B 87 235132Google Scholar
[33] Yan J, Mortensen J J, Jacobsen K W, Thygesen K S 2011 Phys. Rev. B 83 245122Google Scholar
[34] Yi Z, Ma Y, Zheng Y, Duan Y, Li H 2019 Adv. Mater. Interfaces 6 1801175Google Scholar
[35] Rozzi C A, Varsano D, Marini A, Gross E K U, Rubio A 2006 Phys. Rev. B 73 205119Google Scholar
[36] Smail-Beigi S 2006 Phys. Rev. B 73 233103Google Scholar
[37] Rasmussen F A, Schmidt P S, Winther K T, Thygesen K S 2016 Phys. Rev. B 94 155406Google Scholar
[38] Olsen T 2016 Phys. Rev. B 94 235106Google Scholar
[39] Tiago M L, Ismail-Beigi S, Louie S G 2004 Phys. Rev. B 69 125212Google Scholar
[40] Klimeš J, Kaltak M, Kresse G 2014 Phys. Rev. B 90 075125Google Scholar
[41] Haastrup S, Strange Mikke, Pandey M, Deilmann T, Schmidt Per S, Hinsche Nicki F, Gjerding Morten N, Torelli D, Larsen Peter M, Riis-Jensen Anders C 2018 2D Mater. 5 042002Google Scholar
[42] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601Google Scholar
[43] 隋国民, 严桂俊, 杨光, 张宝, 冯亚青 2022 71 208801Google Scholar
Sui G M, Yan G J, Yang G, Zhang B, Feng Y Q 2022 Acta Phys. Sin. 71 208801Google Scholar
[44] Andersen K, Latini S, Thygesen K S 2015 Nano Lett. 15 4616Google Scholar
[45] Pandey T, Parker David S, Lindsay L 2017 Nanotechnology 28 455706Google Scholar
[46] Pang Y, Wu M, Zhang J, Yi Z 2021 J. Phys. Chem. C 125 3027Google Scholar
计量
- 文章访问数: 4285
- PDF下载量: 111
- 被引次数: 0