Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of hydrogen-terminated single crystalline diamond field effect transistors with different surface orientations

Zhang Jin-Feng Xu Jia-Min Ren Ze-Yang He Qi Xu Sheng-Rui Zhang Chun-Fu Zhang Jin-Cheng Hao Yue

Citation:

Characteristics of hydrogen-terminated single crystalline diamond field effect transistors with different surface orientations

Zhang Jin-Feng, Xu Jia-Min, Ren Ze-Yang, He Qi, Xu Sheng-Rui, Zhang Chun-Fu, Zhang Jin-Cheng, Hao Yue
PDF
HTML
Get Citation
  • Diamond has great potential applications in high-power, high-frequency semiconductor devices because of its wide band gap (5.5 eV), high thermal conductivity (22W/(cm·K)), and high carrier mobility (4500 cm2/(V·s) for electron, and 3800 cm2/(V·s) for hole). It has been widely considered as an ultimate semiconductor. From the analysis of our previous work, we find that the output current of field effect transistor based on hydrogen-terminated polycrystalline diamond is usually larger than that based on single crystal diamond, and that the preferential orientations of the polycrystalline diamond are mainly $ \langle 110\rangle $ and $ \langle 111\rangle $ shown by XRD results. Therefore, in order to further analyze the effect of surface orientation on the device performance of hydrogen-terminated diamond field effect transistor (FET), we study the devices fabricated respectively on the (110) plane and (111) plane single crystal diamond plates obtained from a single 3.5-mm-thick single crystal diamond grown by the microwave plasma chemical vapor deposition on the high-pressure high-temperature synthesized diamond substrate. Prior to processing the device, these diamond plates are characterized by atomic force microscope, Raman spectra and photoluminescence (PL) spectra. The results of Raman and PL spectra show that (110) plane and (111) plane plates originating from the same CVD single crystal diamond have no significant difference in optical property. Then the normally-on hydrogen-terminated diamond FET with a gate length of 6 μm is achieved. The device on (111) plane delivers a saturation drain current of 80.41 mA/mm at a gate voltage VGS = –4 V, which is approximately 1.4 times that of the device on (110) plane. Meanwhile, the on-resistance of the device on (111) plane is 48.51 Ω·mm, and it is only 67% of the device on (110) plane. Analyses of the capacitance-voltage show that the hole concentration of the gated device on (110) plane and (111) plane are 1.34 × 1013 cm–2 and 1.45 × 1013 cm–2, respectively, approximately at the same level. In addition, the hole density of the device on both (110) and (111) plane increase near-linearly with the increase of gate voltage from the threshold voltage to – 4 V, indicating that the control effect of the gate on the carrier in the channel is uniform. The possible reason for the higher saturation drain current as well as the lower on-resistance of the device on (111) plane is that its sheet resistance is lower.
      Corresponding author: Ren Ze-Yang, zeyangren@xidian.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0406504), the Foundation of State Key Laboratory of China (Grant No. 6142605180102), the National Natural Science Foundation of China (Grant No. 61874080), and the National Postdoctoral Program for Innovative Talents (Grant No. BX20190263)
    [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Baliga B J 1989 IEEE Electron Dev. Lett. 10 455Google Scholar

    [3]

    Zhang C M, Zheng Y B, Jiang Z G, Lv X Y, Hou X, Hu S, Liu W J 2010 Chin. Phys. Lett. 27 088103Google Scholar

    [4]

    房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 64 228101Google Scholar

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta. Phys. Sin. 64 228101Google Scholar

    [5]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249Google Scholar

    [6]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783Google Scholar

    [7]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electron Dev. Lett. 33 1111Google Scholar

    [8]

    Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 013510Google Scholar

    [9]

    Kawarada H 2012 Jpn. J. Appl. Phys 51 090111Google Scholar

    [10]

    任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 66 208101Google Scholar

    Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Quan R D, Hao Y 2017 Acta. Phys. Sin. 66 208101Google Scholar

    [11]

    张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃 2018 67 068101Google Scholar

    Zhang J F, Yang P Z, Ren Z Y, Zhang J C, Xu S R, Zhang C F, Xu L, Hao Y 2018 Acta. Phys. Sin. 67 068101Google Scholar

    [12]

    Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Xu S R, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 786Google Scholar

    [13]

    Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Chen D Z, Yang P Z, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 1302Google Scholar

    [14]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 080112

    [15]

    Yu X X, Zhou J J, Qi C J, Cao Z Y, Kong Y C, Chen T S 2018 IEEE Electron Dev. Lett. 39 1373Google Scholar

    [16]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570Google Scholar

    [17]

    Imanishi S, Horikawa K, Qi N, Okubo S, Kageura T, Hiraiwa A, Kawarada H 2018 IEEE Electron Dev. Lett. 40 279

    [18]

    Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diamond Relat. Mater. 43 43Google Scholar

    [19]

    Umezawa H, Tatsumi N, Kato Y, Shikata S I 2013 Diamond Relat. Mater. 40 56Google Scholar

    [20]

    Achard J, Tallaire A, Sussmann R, Silva F, Gicquel A 2005 J. Cryst. Growth. 284 396Google Scholar

    [21]

    Tallaire A, Achard J, Secroun A, Gryse O D, Weerdt F D, Barjon J, Silva F, Gicquel A 2006 J. Cryst. Growth. 291 533Google Scholar

    [22]

    Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E, Bergonzo P 2003 Appl. Phys. Lett. 82 2266Google Scholar

    [23]

    Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796Google Scholar

    [24]

    Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509Google Scholar

    [25]

    Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741Google Scholar

    [26]

    Wang Y F, Chang X H, Zhang C F, Fu J, Fan S W, Bu R, Zhang J W, Wang W, Wang H X, Wang J J 2018 Diamond Relat. Mater. 81 113Google Scholar

    [27]

    Liu J W, Liao M Y, Lmura M, Koide Y 2013 Appl. Phys. Lett. 103 092905Google Scholar

    [28]

    Nissan C Y, Shappir J, Frohman B D 1985 Solid-State Electron. 28 717Google Scholar

    [29]

    Liu J W, Koide Y 2017 Methods. Mol. Biol 15 217

    [30]

    Wang Y F, Wang W, Chang X, Fu J, Liu Z, Zhao D, Shao G, Fan S, Bu R, Zhang J, Wang H X 2019 Sci. Rep. 9 5192Google Scholar

    [31]

    Saha N C, Kasu M 2019 Diamond Relat. Mater. 92 81Google Scholar

    [32]

    Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Yang P Z, Chen D Z, Li Y, Hao Y 2018 J. Semicond. 39 72

    [33]

    Kasu M, Kubovic M, Aleksov A, Teofilov N, Sauer R, Kohn E, Makimoto T 2004 Jpn. J. Appl. Phys. 43 L975Google Scholar

    [34]

    Kasu M 2017 Jpn. J. Appl. Phys. 56 01AA01Google Scholar

  • 图 1  器件制备流程图 (a)氢等离子体处理; (b) Au沉积; (c)隔离工艺; (d)栅窗口光刻; (e) Au腐蚀; (f) Al沉积及剥离, 右上角为器件俯视图显微照片

    Figure 1.  Schematic diagram of the device fabrication process: (a) Hydrogen plasma treatment; (b) gold deposition; (c) device isolation; (d) gate window photolithography; (e)wet etching of gold; (f) aluminum deposition and lifting off. The inset at the upper right corner of (f) is the top view of the device.

    图 2  氢等离子体处理前的金刚石表面形貌 (a) (110)面; (b) (111)面

    Figure 2.  Surface morphology of the diamond before hydrogen plasma treatment: (a) (110) plane; (b) (111) plane.

    图 3  氢等离子体处理后的金刚石表面形貌 (a) (110)面; (b) (111)面

    Figure 3.  Surface morphology of the diamond after hydrogen plasma treatment: (a) (110) plane; (b) (111) plane.

    图 4  不同表面金刚石的 (a) Raman光谱图, (b) PL光谱

    Figure 4.  (a) Raman spectra and (b) photoluminescence (PL) spectra of the diamond plates with different surface orientations.

    图 5  栅-源二极管的I-V特性以及正向偏置下的拟合结果 (a) A器件I-V特性; (b) 图(a)部分栅压区的拟合结果; (c) B器件I-V特性; (d) 图(c)部分栅压区的拟合结果

    Figure 5.  Current-voltage characteristics of the gate-source diodes and fitting results at the forward bias: (a) and (b) are for device A; (c) and (d) are for device B.

    图 6  输出特性 (a)器件A; (b)器件B

    Figure 6.  Output characteristics: (a) Device A; (b) device B.

    图 7  转移特性 (a)器件A; (b)器件B

    Figure 7.  Transfer and transconductance characteristics: (a) Device A; (b) device B.

    图 8  氢终端金刚石场效应管输出电流(a)和最大跨导(b)随栅长的变化(数据来自文献[26,27,2933]), MOSFET器件给出了栅金属和栅介质

    Figure 8.  Summary of the reported (a) IDmax and (b) maximum transconductance of hydrogen-terminated diamond FETs dependent on the gate length[26,27,29-33]. The gate metal and gate dielectric are given for MOSFETs.

    图 9  栅源二极管的C-V特性以及计算出的沟道载流子浓度随VGS的变化 (a)器件A; (b)器件B

    Figure 9.  Capacitance-voltage characteristics of the gate-source diode and the calculated hole density in the gated channel as a function of VGS: (a) Device A; (b) device B.

    Baidu
  • [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Baliga B J 1989 IEEE Electron Dev. Lett. 10 455Google Scholar

    [3]

    Zhang C M, Zheng Y B, Jiang Z G, Lv X Y, Hou X, Hu S, Liu W J 2010 Chin. Phys. Lett. 27 088103Google Scholar

    [4]

    房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 64 228101Google Scholar

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta. Phys. Sin. 64 228101Google Scholar

    [5]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249Google Scholar

    [6]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783Google Scholar

    [7]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electron Dev. Lett. 33 1111Google Scholar

    [8]

    Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 013510Google Scholar

    [9]

    Kawarada H 2012 Jpn. J. Appl. Phys 51 090111Google Scholar

    [10]

    任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 66 208101Google Scholar

    Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Quan R D, Hao Y 2017 Acta. Phys. Sin. 66 208101Google Scholar

    [11]

    张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃 2018 67 068101Google Scholar

    Zhang J F, Yang P Z, Ren Z Y, Zhang J C, Xu S R, Zhang C F, Xu L, Hao Y 2018 Acta. Phys. Sin. 67 068101Google Scholar

    [12]

    Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Xu S R, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 786Google Scholar

    [13]

    Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Chen D Z, Yang P Z, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 1302Google Scholar

    [14]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 080112

    [15]

    Yu X X, Zhou J J, Qi C J, Cao Z Y, Kong Y C, Chen T S 2018 IEEE Electron Dev. Lett. 39 1373Google Scholar

    [16]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570Google Scholar

    [17]

    Imanishi S, Horikawa K, Qi N, Okubo S, Kageura T, Hiraiwa A, Kawarada H 2018 IEEE Electron Dev. Lett. 40 279

    [18]

    Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diamond Relat. Mater. 43 43Google Scholar

    [19]

    Umezawa H, Tatsumi N, Kato Y, Shikata S I 2013 Diamond Relat. Mater. 40 56Google Scholar

    [20]

    Achard J, Tallaire A, Sussmann R, Silva F, Gicquel A 2005 J. Cryst. Growth. 284 396Google Scholar

    [21]

    Tallaire A, Achard J, Secroun A, Gryse O D, Weerdt F D, Barjon J, Silva F, Gicquel A 2006 J. Cryst. Growth. 291 533Google Scholar

    [22]

    Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E, Bergonzo P 2003 Appl. Phys. Lett. 82 2266Google Scholar

    [23]

    Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796Google Scholar

    [24]

    Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509Google Scholar

    [25]

    Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741Google Scholar

    [26]

    Wang Y F, Chang X H, Zhang C F, Fu J, Fan S W, Bu R, Zhang J W, Wang W, Wang H X, Wang J J 2018 Diamond Relat. Mater. 81 113Google Scholar

    [27]

    Liu J W, Liao M Y, Lmura M, Koide Y 2013 Appl. Phys. Lett. 103 092905Google Scholar

    [28]

    Nissan C Y, Shappir J, Frohman B D 1985 Solid-State Electron. 28 717Google Scholar

    [29]

    Liu J W, Koide Y 2017 Methods. Mol. Biol 15 217

    [30]

    Wang Y F, Wang W, Chang X, Fu J, Liu Z, Zhao D, Shao G, Fan S, Bu R, Zhang J, Wang H X 2019 Sci. Rep. 9 5192Google Scholar

    [31]

    Saha N C, Kasu M 2019 Diamond Relat. Mater. 92 81Google Scholar

    [32]

    Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Yang P Z, Chen D Z, Li Y, Hao Y 2018 J. Semicond. 39 72

    [33]

    Kasu M, Kubovic M, Aleksov A, Teofilov N, Sauer R, Kohn E, Makimoto T 2004 Jpn. J. Appl. Phys. 43 L975Google Scholar

    [34]

    Kasu M 2017 Jpn. J. Appl. Phys. 56 01AA01Google Scholar

  • [1] Li Lu, Zhang Yang-Kun, Shi Dong-Xia, Zhang Guang-Yu. Cotrollable growth of monolayer MoS2 films and their applications in devices. Acta Physica Sinica, 2022, 71(10): 108102. doi: 10.7498/aps.71.20212447
    [2] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] Huang Guang-Wei, Wu Kun, Chen Ye, Li Lin-Xiang, Zhang Si-Yuan, Wang Zun-Gang, Zhu Hong-Ying, Zhou Chun-Zhi, Zhang Yi-Yun, Liu Zhi-Qiang, Yi Xiao-Yan, Li Jin-Min. Response to 14 MeV neutrons for single-crystal diamond detectors. Acta Physica Sinica, 2021, 70(20): 202901. doi: 10.7498/aps.70.20210891
    [5] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [6] Zhang Meng, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei. Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [7] Song Hang, Liu Jie, Chen Chao, Ba Long. Graphene-based field effect transistor with ion-gel film gate. Acta Physica Sinica, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [8] Wei Zheng, Wang Qin-Qin, Guo Yu-Tuo, Li Jia-Wei, Shi Dong-Xia, Zhang Guang-Yu. Research progress of high-quality monolayer MoS2 films. Acta Physica Sinica, 2018, 67(12): 128103. doi: 10.7498/aps.67.20180732
    [9] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [10] Geng Chuan-Wen,  Xia Yu-Hao,  Zhao Hong-Yang,  Fu Qiu-Ming,  Ma Zhi-Bin. Effect of edge inclination of single crystal diamond on homoepitaxial growth. Acta Physica Sinica, 2018, 67(24): 248101. doi: 10.7498/aps.67.20181537
    [11] Zhang Jin-Feng, Yang Peng-Zhi, Ren Ze-Yang, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Xu Lei, Hao Yue. Characterization of high-transconductance long-channel hydrogen-terminated polycrystal diamond field effect transistor. Acta Physica Sinica, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [12] Lu Qi, Lyu Hong-Ming, Wu Xiao-Ming, Wu Hua-Qiang, Qian He. Research progress of graphene radio frequency devices. Acta Physica Sinica, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [13] Wu Pei, Hu Xiao, Zhang Jian, Sun Lian-Feng. Research status and development graphene devices using silicon as the subtrate. Acta Physica Sinica, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [14] Ren Ze-Yang, Zhang Jin-Feng, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Quan Ru-Dai, Hao Yue. Characteristics of H-terminated single crystalline diamond field effect transistors. Acta Physica Sinica, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [15] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [16] Liu Chang, Lu Ji-Wu, Wu Wang-Ran, Tang Xiao-Yu, Zhang Rui, Yu Wen-Jie, Wang Xi, Zhao Yi. Gate length dependence of hot carrier injection degradation in short channel silicon on insulator planar MOSFET. Acta Physica Sinica, 2015, 64(16): 167305. doi: 10.7498/aps.64.167305
    [17] Wang Kai-Yue, Zhu Yu-Mei, Li Zhi-Hong, Tian Yu-Ming, Chai Yue-Sheng, Zhao Zhi-Gang, Liu Kai. The defect luminescences of {100} sector in nitrogen-doped diamond. Acta Physica Sinica, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [18] Zhang Jun-Yan, Deng Tian-Song, Shen Xin, Zhu Kong-Tao, Zhang Qi-Feng, Wu Jin-Lei. Electrical and optical properties of single As-doped ZnO nanowire field effect transistors. Acta Physica Sinica, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [19] Peng Hai-Bo, Wang Tie-Shan, Han Yun-Cheng, Ding Da-Jie, Xu He, Cheng Rui, Zhao Yong-Tao, Wang Yu-Yu. Study of channeling effect by impact of highly charged ions on crystal surface of Si(110). Acta Physica Sinica, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [20] Chen Chang-Hong, Huang De-Xiu, Zhu Peng. Infrared absorption of VO2 based Mott transition field effect transistor dependent on optical phonon in α-SiN: H films. Acta Physica Sinica, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
Metrics
  • Abstract views:  9274
  • PDF Downloads:  177
  • Cited By: 0
Publishing process
  • Received Date:  02 July 2019
  • Accepted Date:  05 November 2019
  • Published Online:  20 January 2020

/

返回文章
返回
Baidu
map