搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究

张金风 杨鹏志 任泽阳 张进成 许晟瑞 张春福 徐雷 郝跃

引用本文:
Citation:

高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究

张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃

Characterization of high-transconductance long-channel hydrogen-terminated polycrystal diamond field effect transistor

Zhang Jin-Feng, Yang Peng-Zhi, Ren Ze-Yang, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Xu Lei, Hao Yue
PDF
导出引用
  • 基于多晶金刚石制作了栅长为4 μm的铝栅氢终端金刚石场效应晶体管.器件的饱和漏源电流为160 mA/mm,导通电阻低达37.85 Ω ·mm,最大跨导达到32 mS/mm,且跨导高于最大值的90%的栅压(VGS)范围达到3 V(-2 V ≤ VGS ≤-5 V).通过传输线电阻分析以及器件的导通电阻和电容-电压特性分析,发现氢终端多晶金刚石栅下沟道中的空穴面浓度达到了1.56×1013 cm-2,有效迁移率在前述高跨导栅压范围保持在约170 cm2/(V·s).分析认为,较低的栅源和栅漏串联电阻、沟道中高密度的载流子和在大范围栅压内的高水平迁移率是引起高而宽阔的跨导峰和低导通电阻的原因.
    Diamond has a great potential to be used in high-power, high-voltage and high-frequency semiconductor devices due to its wide band gap (5.5 eV), high breakdown field (> 10 MV/cm), high thermal conductivity (22 W/(cm·K)), and good carrier transport property. High-quality polycrystal diamond with large size wafers (up to several inches) is more easily obtained than the expensive monocrystal diamond plate with the size of only several mm2, and the good performance of electronic device on polycrystal diamond has been reported. So we fabricate a normally-on hydrogen-terminated polycrystal diamond field effect transistor with a 4-μm aluminum gate by using a gold mask process. The saturation drain current is 160 mA/mm, and the on-resistance is as low as 37.85 Ω ·mm. The maximum transconductance reaches 32 mS/mm, and the gate voltage range with the transconductance higher than 90% of its maximum value reaches 3 V (-2 V ≤ VGS ≤ -5 V). An Ohmic contact resistance of 5.52 Ω ·mm and a quite low square resistance of 5.71 kΩ/sq for the hydrogen-terminated diamond are extracted from the analysis of transmission line model measurement. On the basis of the analyses of the obtained results, the on-resistance of device dependent on gate voltage, and the capacitance-voltage data measured at the gate-source diode, we find that the hole sheet density under the gate reaches 1.56×1013 cm-2 at a gate voltage of -5 V, and the extracted effective mobility of the holes stays at about 170 cm2/(V·s) in the afore-mentioned gate voltage range with high transconductance. In summary, the high and broad transconductance peak and the low on-resistance are attributed to the relatively low gate-source and gate-drain series resistance, the high-density carriers in the channel, and the high-level mobility achieved over a large gate voltage range. The relevant research of finding proper dielectrics for the gate insulator and the passivation layer is under way to further improve the device performance.
      通信作者: 张金风, jfzhang@xidian.edu.cn
      Corresponding author: Zhang Jin-Feng, jfzhang@xidian.edu.cn
    [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Baliga B J 1989 IEEE Electron Dev. Lett. 10 455

    [3]

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 228101 (in Chinese) [房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 64 228101]

    [4]

    Nebel C E, Rezek B, Zrenner A 2004 Diamond Relat. Mater. 13 2031

    [5]

    Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472

    [6]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 090112

    [7]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Dev. Lett. 33 1471

    [8]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570

    [9]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249

    [10]

    Wang J J, He Z Z, Yu C, Song X B, Wang H X, Lin F, Feng Z H 2016 Diamond Relat. Mater. 70 114

    [11]

    Matsudaira H, Miyamoto S, Ishizaka H, Umezawa H 2004 IEEE Electron Dev. Lett. 25 480

    [12]

    Feng Z H, Wang J J, He Z Z, Dun S B, Cui Y, Liu J L, Zhang P W, Hui G, Li C M, Cai S J 2013 Sci. China:Tech. Sci. 56 957

    [13]

    Gluche P, Aleksov A, Vescan A, Ebert W, Kohn E 1997 IEEE Electron Dev. Lett. 18 547

    [14]

    Ren Z, Zhang J, Zhang J, Zhang C, Chen D, Yang P, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 1302

    [15]

    Ren Z, Zhang J, Zhang J, Zhang C, Xu S, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 786

    [16]

    Zhang J F, Ren Z Y, Zhang J C, Zhang C F, Chen D Z, Xu S R, Li Y, Hao Y 2017 Jpn. J. Appl. Phys. 56 100301

    [17]

    Liu J W, Liao M Y, Imura M, Koide Y 2013 Appl. Phys. Lett. 103 092905

    [18]

    Liu J W, Liao M Y, Imura M, Oosato H, Watanabe E, Tanaka A, Iwai H, Koide Y 2013 J. Appl. Phys. 114 084108

    [19]

    Reeves G K, Harrison H B 2005 IEEE Electron Dev. Lett. 3 111

    [20]

    Moran D A J, Fox O J L, Mclelland H, Russell S, May P W 2011 IEEE Electron Dev. Lett. 32 599

    [21]

    Hirama K, Takayanagi H, Yamauchi S, Jingu Y, Umezawa H, Kawarada H 2007 IEEE International Electron Devices Meeting Washington, D.C., United States, December 10-12, 2007 p873

    [22]

    Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796

    [23]

    Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509

    [24]

    Winter R, Ahn J, Mcintyre P C, Eizenberg M 2013 J. Vac. Sci. Technol. B:Microelectron. Nanometer Struct. 31 030604

    [25]

    Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741

    [26]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783

  • [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Baliga B J 1989 IEEE Electron Dev. Lett. 10 455

    [3]

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 228101 (in Chinese) [房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 64 228101]

    [4]

    Nebel C E, Rezek B, Zrenner A 2004 Diamond Relat. Mater. 13 2031

    [5]

    Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472

    [6]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 090112

    [7]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Dev. Lett. 33 1471

    [8]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570

    [9]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249

    [10]

    Wang J J, He Z Z, Yu C, Song X B, Wang H X, Lin F, Feng Z H 2016 Diamond Relat. Mater. 70 114

    [11]

    Matsudaira H, Miyamoto S, Ishizaka H, Umezawa H 2004 IEEE Electron Dev. Lett. 25 480

    [12]

    Feng Z H, Wang J J, He Z Z, Dun S B, Cui Y, Liu J L, Zhang P W, Hui G, Li C M, Cai S J 2013 Sci. China:Tech. Sci. 56 957

    [13]

    Gluche P, Aleksov A, Vescan A, Ebert W, Kohn E 1997 IEEE Electron Dev. Lett. 18 547

    [14]

    Ren Z, Zhang J, Zhang J, Zhang C, Chen D, Yang P, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 1302

    [15]

    Ren Z, Zhang J, Zhang J, Zhang C, Xu S, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 786

    [16]

    Zhang J F, Ren Z Y, Zhang J C, Zhang C F, Chen D Z, Xu S R, Li Y, Hao Y 2017 Jpn. J. Appl. Phys. 56 100301

    [17]

    Liu J W, Liao M Y, Imura M, Koide Y 2013 Appl. Phys. Lett. 103 092905

    [18]

    Liu J W, Liao M Y, Imura M, Oosato H, Watanabe E, Tanaka A, Iwai H, Koide Y 2013 J. Appl. Phys. 114 084108

    [19]

    Reeves G K, Harrison H B 2005 IEEE Electron Dev. Lett. 3 111

    [20]

    Moran D A J, Fox O J L, Mclelland H, Russell S, May P W 2011 IEEE Electron Dev. Lett. 32 599

    [21]

    Hirama K, Takayanagi H, Yamauchi S, Jingu Y, Umezawa H, Kawarada H 2007 IEEE International Electron Devices Meeting Washington, D.C., United States, December 10-12, 2007 p873

    [22]

    Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796

    [23]

    Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509

    [24]

    Winter R, Ahn J, Mcintyre P C, Eizenberg M 2013 J. Vac. Sci. Technol. B:Microelectron. Nanometer Struct. 31 030604

    [25]

    Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741

    [26]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783

  • [1] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性.  , 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管.  , 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] 邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃. 氢终端单晶金刚石反相器特性.  , 2022, 71(8): 088102. doi: 10.7498/aps.71.20211447
    [4] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器.  , 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [5] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型.  , 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [6] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性.  , 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [7] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器.  , 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [8] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性.  , 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [9] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究.  , 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [10] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响.  , 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [11] 刘畅, 卢继武, 吴汪然, 唐晓雨, 张睿, 俞文杰, 王曦, 赵毅. 超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性.  , 2015, 64(16): 167305. doi: 10.7498/aps.64.167305
    [12] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响.  , 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [13] 颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安. 氮氢共掺杂金刚石中氢的典型红外特征峰的表征.  , 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [14] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究.  , 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [15] 刘峰斌, 汪家道, 陈大融, 赵明, 何广平. 不同密度氢吸附金刚石(100)表面的微观结构.  , 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [16] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性.  , 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [17] 刘峰斌, 汪家道, 陈大融. 氢、氧终端掺硼金刚石薄膜的电子结构.  , 2008, 57(2): 1171-1176. doi: 10.7498/aps.57.1171
    [18] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性.  , 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [19] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究.  , 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
    [20] 李荣斌, 戴永兵, 胡晓君, 沈荷生, 何贤昶. 能量粒子轰击金刚石的计算机模拟.  , 2003, 52(12): 3135-3141. doi: 10.7498/aps.52.3135
计量
  • 文章访问数:  6253
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-04
  • 修回日期:  2017-12-28
  • 刊出日期:  2019-03-20

/

返回文章
返回
Baidu
map