搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶金刚石探测器对14 MeV单能中子的响应

黄广伟 吴坤 陈晔 李林祥 张思远 王尊刚 朱红英 周春芝 张逸韵 刘志强 伊晓燕 李晋闽

引用本文:
Citation:

单晶金刚石探测器对14 MeV单能中子的响应

黄广伟, 吴坤, 陈晔, 李林祥, 张思远, 王尊刚, 朱红英, 周春芝, 张逸韵, 刘志强, 伊晓燕, 李晋闽

Response to 14 MeV neutrons for single-crystal diamond detectors

Huang Guang-Wei, Wu Kun, Chen Ye, Li Lin-Xiang, Zhang Si-Yuan, Wang Zun-Gang, Zhu Hong-Ying, Zhou Chun-Zhi, Zhang Yi-Yun, Liu Zhi-Qiang, Yi Xiao-Yan, Li Jin-Min
PDF
HTML
导出引用
  • 为探索单晶金刚石材料在辐射探测器上的应用, 尤其是用于监测D-T中子源产生的14 MeV单能中子束流, 研制了高性能单晶金刚石辐射探测器, 并在中国工程物理研究院K-400型中子发生器上测试其对14 MeV单能中子的响应. 利用Geant4蒙特卡罗仿真程序, 结合ENDF-VIII.0, JEFF-3.3, BROND-3.1, JENDL-4.0u和CENDL-3.1五个评价核数据库对14 MeV单能中子在金刚石中的能量沉积和探测效率进行模拟计算和对比, 并给出了仿真能量沉积谱展宽和实测谱能量刻度的方法. 研究结果表明, 利用CENDL-3.1库计算本文的仿真模型, 可以更精准地模拟14 MeV中子入射金刚石探测器能量沉积情况, 结合本文给出的能量沉积谱刻度和展宽方法能够很好地匹配实测中子谱12C(n, α)9Be特征峰, 其对于弹性散射和12C(n, 3α)相较其他核数据库的描述也更为准确, 仿真计算探测效率与实际测量值仅相差0.61%; 在长达2 h、2 × 1010 n/s的高通量测试环境下, 探测器对于12C(n, α)9Be反应特征峰的探测效率、能量分辨率和峰位道址基本保持稳定, 有望用于14 MeV快中子束流的监测.
    Single-crystal diamond (SCD) detectors promise to have applications in neutron spectrometers and fusion neutron monitoring under high flux deuterium plasma. The response to 14 MeV neutrons for the SCD detector is studied in this paper. A high-performance SCD neutron detector is developed by processing cleaning wafer, depositing metal electrodes, annealing and wire-bonding. A fast-neutrons monitoring system containing the detector, preamplifier and digital multichannel analyzer is constructed, and the response to 14 MeV neutrons for the detector is measured on the K-400 neutron generator supported by China Academy of Engineering Physics. In addition, computational simulations of the energy deposition and detection efficiency of 14 MeV neutron through diamond are performed via Geant4 toolkit based on evaluated nuclear data libraries of ENDF-VIII.0, JEFF-3.3, BROND-3.1, JENDL-4.0u and CENDL-3.1. The methods of widening the simulation spectrum and calibration of measuring spectrum are presented in order that simulation results are in reasonable agreement with measured values. The results indicate that the energy deposition of 14 MeV neutrons incident on the 12C can be more accurately calculated with CENDL-3.1 than with other data libraries. The elastic scattering and reaction of 12C(n, 3α) are described more accurately with the CENDL-3.1, and the characteristic peaks of 12C(n, α)9Be matched well the calibrated testing spectrum and the after-widening simulation spectrum, with a difference between the simulated detection efficiency and measuring results being as low as 0.61%. The outcome measures are described as the standardized mean difference, with a detection efficiency of (3.31 × 10–4 ± 0.11 × 10–4) counts/n, an energy resolution of 4.02% ± 0.09%, and a peaking channel of 1797.24 ± 0.80, which suggest that the detector keeps stable well under a high neutron flux of 2 × 1010 n/s for as long as 2 h. The results demonstrate that the SCD detector can be a promising candidate for monitoring 14 MeV D-T neutrons.
      通信作者: 周春芝, zhoucz6622@163.com ; 张逸韵, yyzhang@semi.ac.cn
      Corresponding author: Zhou Chun-Zhi, zhoucz6622@163.com ; Zhang Yi-Yun, yyzhang@semi.ac.cn
    [1]

    Thomas D, Bedogni R, Méndez R, Thompson AZimbal A 2018 Radiat. Prot. Dosim. 180 21Google Scholar

    [2]

    Bertalot L, Krasilnikov V, Core L, Saxena A, Yukhnov N, Barnsley R, Walsh M 2019 J. Fusion Energ. 38 283Google Scholar

    [3]

    Cazzaniga C, Sunden E A, Binda F, et al. 2014 Rev. Sci. Instrum. 85 43506Google Scholar

    [4]

    罗均华 2021 14 MeV中子物理及截面测量 (北京: 科学出版社) 第17页

    Luo J H 2021 14MeV Neutron Physics and Cross Section Measurements (Beijing: Science Press) p17 (in Chinese)

    [5]

    Osipenko M, Ripani M, Ricco G, Caiffi B, Pompili F, Pillon M, Angelone M, Verona-Rinati G, Cardarelli R, Mila G, Argiro S 2015 Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 799 207Google Scholar

    [6]

    Weilhammer P, Adam W, Bauer C, et al. 1998 Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 409 264Google Scholar

    [7]

    Isberg J, Hammersberg J, Johansson E, Wikström T, Twitchen D J, Whitehead A J, Coe S E, Scarsbrook G A 2002 Science (American Association for the Advancement of Science) 297 1670Google Scholar

    [8]

    Lee C, Ban C, Lee H, Choo K, Jun B 2019 Appl. Radiat. Isotopes 152 25Google Scholar

    [9]

    Tallaire A, Collins A T, Charles D, Achard J, Sussmann R, Gicquel A, Newton M E, Edmonds A M, Cruddace R J 2006 Diam. Relat. Mater. 15 1700Google Scholar

    [10]

    Laub W U, Kaulich T W, Nüsslin F 1999 Physics in Medicine & Biology 44 2183Google Scholar

    [11]

    Schirru F, Kisielewicz K, Nowak T, Marczewska B 2010 Journal of Physics. D, Applied Physics 43 265101Google Scholar

    [12]

    Zbořil MZimbal A 2014 Rev. Sci. Instrum. 85 11DGoogle Scholar

    [13]

    Pillon M, Angelone M, Batistoni P, Loreti S, Milocco A 2016 Fusion Eng. Des. 106 93Google Scholar

    [14]

    Dankowski J, Drozdowicz K, Kurowski A, Wiącek U, Nowak T, Zabila Y 2017 Diam. Relat. Mater. 79 88Google Scholar

    [15]

    Giacomelli L, Nocente M, Rebai M, et al. 2016 Rev. Sci. Instrum. 87 11DGoogle Scholar

    [16]

    Element sixTM https://www.e6.com/ [2021-5-12]

    [17]

    Pillon M, Angelone M, Krása A, Plompen A J M, Schillebeeckx P, Sergi M L 2011 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 640 185Google Scholar

    [18]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 250Google Scholar

    [19]

    Ge Z G, Zhao Z X, Xia H H, Zhuang Y X, Liu T J, Zhang J SWu H C 2011 J. Korean Phys. Soc. 59 1052Google Scholar

    [20]

    李福龙, 张雄杰, 王仁波 2013 核电子学与探测技术 33 1266Google Scholar

    Li F L, Zhang X J, Wang R B 2013 Nuclear Electronics & Detection Technology 33 1266Google Scholar

    [21]

    石睿 2018 博士学位论文(成都: 成都理工大学)

    Shi R 2018 Ph. D. Dissertation (Chengdu: Chengdu University of Technology) (in Chinese)

  • 图 1  (a) 金刚石探测器结构; (b) 探测器实物

    Fig. 1.  (a) The schematic diagram of the single-crystal diamond detector structure; (b) the as-fabricated device for test.

    图 2  (a) 金刚石探测器中子能谱测量系统; (b) 14 MeV中子测量实验场景

    Fig. 2.  (a) Schematic diagram of the setup for measurement of neutron spectrum; (b) experimental scenario for measurement of 14 MeV neutrons.

    图 3  沉积能量粒子及其占比

    Fig. 3.  Energy-deposited particles and their proportion.

    图 4  不同粒子所在事件能量沉积情况 (a) 12C能量沉积; (b) 9Be能量沉积; (c) α粒子能量沉积情况; (d) 13C能量沉积; (e) γ射线能量沉积; (f) 电子能量沉积

    Fig. 4.  Energy deposition for different particles in their events: (a)–(f) are for 12C, 9Be, alpha particles, 13C, gamma rays and electrons, respectively.

    图 5  不同核数据库能量沉积对比(内插图是能量沉积谱的局部放大)

    Fig. 5.  Comparison of energy deposition calculated via different nuclear databases. A close-up view of the energy-deposition spectra is in the inset.

    图 6  实测谱与刻度、展宽后仿真谱对比(内插图是仿真谱和实测谱的局部放大)

    Fig. 6.  Comparison of measured spectrum with calibrated and widen simulated spectrum. A close-up view of the two spectrums is in the inset.

    图 7  金刚石探测器长时间稳定性测量结果 (a) 探测效率随测量时间的变化; (b) 能量分辨率随测量时间的变化; (c)峰位道址随测量时间的变化

    Fig. 7.  Long-term stability measurement results of the single-crystal diamond detector: (a), (b) and (c) respectively represent the results of detection efficiency, energy resolution, and peak channel that change over measuring time.

    表 1  12C与中子主要相互作用方式

    Table 1.  Main interaction modes between 12C and neutron.

    反应方式反应Q 值/MeV带电粒子产物能量
    12C(n, α)9Be5.7018.299
    12C(n, 3α)7.2756.725
    12C(n, n)12C03.977
    12C(n, p)12B12.5871.413
    12C(n, d)11B13.7320.268
    下载: 导出CSV

    表 2  不同核数据库12C(n, α)9Be反应特征峰统计结果

    Table 2.  Statistical results of characteristic peaks of 12C(n, α)9Be reaction calculated via different nuclear databases.

    核数据库ENDF-VIII.0JEFF-3.3BROND-3.1JENDL-4.0uCENDL-3.1
    粒子沉积数/个976696129814109699862
    探测效率/(10–4 counts·n–1)3.263.203.273.663.29
    统计不确定度/%1.011.021.010.951.01
    下载: 导出CSV
    Baidu
  • [1]

    Thomas D, Bedogni R, Méndez R, Thompson AZimbal A 2018 Radiat. Prot. Dosim. 180 21Google Scholar

    [2]

    Bertalot L, Krasilnikov V, Core L, Saxena A, Yukhnov N, Barnsley R, Walsh M 2019 J. Fusion Energ. 38 283Google Scholar

    [3]

    Cazzaniga C, Sunden E A, Binda F, et al. 2014 Rev. Sci. Instrum. 85 43506Google Scholar

    [4]

    罗均华 2021 14 MeV中子物理及截面测量 (北京: 科学出版社) 第17页

    Luo J H 2021 14MeV Neutron Physics and Cross Section Measurements (Beijing: Science Press) p17 (in Chinese)

    [5]

    Osipenko M, Ripani M, Ricco G, Caiffi B, Pompili F, Pillon M, Angelone M, Verona-Rinati G, Cardarelli R, Mila G, Argiro S 2015 Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 799 207Google Scholar

    [6]

    Weilhammer P, Adam W, Bauer C, et al. 1998 Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 409 264Google Scholar

    [7]

    Isberg J, Hammersberg J, Johansson E, Wikström T, Twitchen D J, Whitehead A J, Coe S E, Scarsbrook G A 2002 Science (American Association for the Advancement of Science) 297 1670Google Scholar

    [8]

    Lee C, Ban C, Lee H, Choo K, Jun B 2019 Appl. Radiat. Isotopes 152 25Google Scholar

    [9]

    Tallaire A, Collins A T, Charles D, Achard J, Sussmann R, Gicquel A, Newton M E, Edmonds A M, Cruddace R J 2006 Diam. Relat. Mater. 15 1700Google Scholar

    [10]

    Laub W U, Kaulich T W, Nüsslin F 1999 Physics in Medicine & Biology 44 2183Google Scholar

    [11]

    Schirru F, Kisielewicz K, Nowak T, Marczewska B 2010 Journal of Physics. D, Applied Physics 43 265101Google Scholar

    [12]

    Zbořil MZimbal A 2014 Rev. Sci. Instrum. 85 11DGoogle Scholar

    [13]

    Pillon M, Angelone M, Batistoni P, Loreti S, Milocco A 2016 Fusion Eng. Des. 106 93Google Scholar

    [14]

    Dankowski J, Drozdowicz K, Kurowski A, Wiącek U, Nowak T, Zabila Y 2017 Diam. Relat. Mater. 79 88Google Scholar

    [15]

    Giacomelli L, Nocente M, Rebai M, et al. 2016 Rev. Sci. Instrum. 87 11DGoogle Scholar

    [16]

    Element sixTM https://www.e6.com/ [2021-5-12]

    [17]

    Pillon M, Angelone M, Krása A, Plompen A J M, Schillebeeckx P, Sergi M L 2011 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 640 185Google Scholar

    [18]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 250Google Scholar

    [19]

    Ge Z G, Zhao Z X, Xia H H, Zhuang Y X, Liu T J, Zhang J SWu H C 2011 J. Korean Phys. Soc. 59 1052Google Scholar

    [20]

    李福龙, 张雄杰, 王仁波 2013 核电子学与探测技术 33 1266Google Scholar

    Li F L, Zhang X J, Wang R B 2013 Nuclear Electronics & Detection Technology 33 1266Google Scholar

    [21]

    石睿 2018 博士学位论文(成都: 成都理工大学)

    Shi R 2018 Ph. D. Dissertation (Chengdu: Chengdu University of Technology) (in Chinese)

  • [1] 李博, 李玲, 朱敬军, 林炜平, 安竹. 采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面.  , 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [2] 寻之朋, 郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟.  , 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [3] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤.  , 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [4] 周斌, 于全芝, 张宏斌, 张雪荧, 鞠永芹, 陈亮, 阮锡超. 80.5 MeV/u碳离子诱发铜靶的放射性剩余产物测量.  , 2021, 70(7): 072501. doi: 10.7498/aps.70.20201503
    [5] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究.  , 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [6] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性.  , 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [7] 田永顺, 胡志良, 童剑飞, 陈俊阳, 彭向阳, 梁天骄. 基于3.5 MeV射频四极质子加速器硼中子俘获治疗装置的束流整形体设计.  , 2018, 67(14): 142801. doi: 10.7498/aps.67.20180380
    [8] 耿传文, 夏禹豪, 赵洪阳, 付秋明, 马志斌. 单晶金刚石边缘表面倾斜角度对同质外延生长的影响.  , 2018, 67(24): 248101. doi: 10.7498/aps.67.20181537
    [9] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计.  , 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [10] 章法强, 祁建敏, 张建华, 李林波, 陈定阳, 谢红卫, 杨建伦, 陈进川. 一种基于成像板的能量卡阈式快中子图像测量方法.  , 2014, 63(12): 128701. doi: 10.7498/aps.63.128701
    [11] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟.  , 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [12] 羊奕伟, 严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳. 贫铀球壳中D-T中子诱发的铀反应率的测量与分析.  , 2013, 62(2): 022801. doi: 10.7498/aps.62.022801
    [13] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究.  , 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [14] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟.  , 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [15] 熊开国, 封国林, 胡经国, 万仕全, 杨杰. 气候变化中高温破纪录事件的蒙特卡罗模拟研究.  , 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [16] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析.  , 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [17] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用.  , 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [18] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用.  , 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [19] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟.  , 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用.  , 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
计量
  • 文章访问数:  6770
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-06-09
  • 上网日期:  2021-10-07
  • 刊出日期:  2021-10-20

/

返回文章
返回
Baidu
map