Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research status and development graphene devices using silicon as the subtrate

Wu Pei Hu Xiao Zhang Jian Sun Lian-Feng

Citation:

Research status and development graphene devices using silicon as the subtrate

Wu Pei, Hu Xiao, Zhang Jian, Sun Lian-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene, a two-dimensional sheet of sp2-hybridized carbon material, possesses excellent properties, such as high carrier mobility, high electrical conductivity, high thermal conductivity, strong mechanical strength and quantum anomalous Hall effect. So graphene quickly lights the enthusiasm for its research and application due to its superior performance. The silicon-based graphene devices are compatible with traditional silicon-based semiconductor technology. The combination of silicon-based graphene devices and silicon-based devices can greatly improve the overall performances of semiconductor devices. With the optimization of graphene preparation process and transfer technology, graphene devices using silicon as the substrate will show promising potential applications. With the scaling of device, the heat dissipation, power consumption and other issues impede the integration of silicon-based devices. Graphene provides a possible solution to these problems. In this paper, we summarize the graphene application in field effect transistor. The bandgap of graphene is zero, which will have adverse effect on the switching ratio of the device. In order to solve this problem, a variety of methods are used to open its bandgap, such as the quantum confinement method, the chemical doping method, the electric field regulation method, and the introduction stress method. In the field of optoelectronic devices, graphene can evenly absorb light at all frequencies, and its photoelectric properties have also been widespread concerned, such as photoelectric detector, photoelectric modulator, solar cell, etc. At the same time, graphene, as a typical two-dimensional material, possesses superior electrical properties and ultra-high specific surface area, and becomes the hottest material in high sensitivity sensors.
      Corresponding author: Sun Lian-Feng, slf@nanoctr.cn
    • Funds: Project supported by the Major Nanoprojects of Ministry of Science and Technology of China (Grant No. 2016YFA0200403) and the National Natural Science Foundation of China (Grant No. 51472057).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178

    [3]

    Huang X, Yin Z Y, Wu S X, Qi X Y, He Q Y, Zhang Q C, Yan Q Y, Boey F, Zhang H 2011 Small 7 1876

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fundenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [5]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [6]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [7]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [8]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [9]

    Hwang E H, Adam S, Das Sarma S 2007 Phys. Rev. Lett. 98 186806

    [10]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [11]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206

    [12]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov S, Booth T J, Roth S 2007 Nature 446 60

    [13]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [14]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [15]

    Han M Y, Ozyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [16]

    Chen Z, Lin Y M, Rooks M J, Avouris P 2007 Physica E 40 228

    [17]

    Trauzettel B, Bulaev D V, Loss D, Burkard G 2007 Nat. Phys. 3 192

    [18]

    Ohta T, Bostwick A, SeyⅡer T, Horn K, Rotenberg E 2006 Science 313 951

    [19]

    Nilsson J, Castro Neto A H, Guinea F, Peres N M R 2008 Phys. Rev. B 78 045405

    [20]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen R, Wang F 2009 Nature 459 820

    [21]

    Evaldsson M, Zozoulenko I V, Xu H, Heinzel T 2008 Phys. Rev. B 78 161407

    [22]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [23]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M. Shen Y R 2008 Science 320 206

    [24]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stomer H L, Basov D N 2008 Nat. Phys. 4 532

    [25]

    Xia F, Mueller T, Golizadeh-Mojarad R 2009 Nano Lett. 9 1039

    [26]

    Gokus T, Nair R R, Bonetti A, Bohmler M, Ferrari A L, Hartschuh 2009 ACS Nano 3 3963

    [27]

    Luo Z, Vora P M, Mele E J, Johnson C, Kikkawa J M 2009 Appl. Phys. Lett. 94 111909

    [28]

    Kim P, Shi L, Majumdar A, McEuen P L 2001 Phys. Rev. Lett. 87 215502

    [29]

    Pop E, Mann D, Wang Q, Goodson K, Dai H J 2006 Nano Lett. 6 96

    [30]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [31]

    Lemme M C, Echtemeyer T J, Baus M, Kurtz H 2007 IEEE Electron Dev. Lett. 28 282

    [32]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y, Duan X 2010 Nature 467 305

    [33]

    Zhang J X, Wang L, Quhe R, Liu Q, Li H, Yu D, Mei W N, Shi J, Gao Z, Lu J 2013 Sci. Rep. 3 1314

    [34]

    Yu J, Liu G, Sumant A V, Balandin A A 2012 Nano Lett. 12 1603

    [35]

    Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Goergiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S, Ponomarenko L A 2012 Science 335 947

    [36]

    Moon J S, Seo H C, Stratan F, Antcliffe M, Schmitz A, Ross R S, Kiselev A A, Wheeler V D, Nyakiti L O, Gaskill D K, Lee K M, Asbeck P M 2013 IEEE Electron Dev. Lett. 34 1190

    [37]

    Khasanvis S, Habib K M M, Rahman M, Narayanan P, Lake R K, Moritz C A 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NanoArch) Amsterdam, the Netherlands July 4-6, 2012 p69

    [38]

    Johari Z, Hamid F K, Tan M L P, Ahmadi M T, Harun F K, Ismail R 2013 J. Comput. Theor. Nanos. 10 1164

    [39]

    Wessely P J, Wessely Y F, Birinci E, Beckmann K, Riedinger B, Schwalke U 2012 Physica E 44 1132

    [40]

    Wessely P J, Schwalke U 2013 8th International Conference on Design and Technology of Integrated Systems in Nanoscale Era (IEEE DTIS) New York, USA, March 26-28, 2013 p12

    [41]

    Wessely P J, Schwalke U 2014 9th IEEE International Conference on Design and Technology of Integrated Systems In Nanoscale Era (DTIS) Santorini May 6-8, 2014 p1

    [42]

    Sordan R, Ferrari A C 2013 IEEE International Electron Devices Meeting (IEDM) Washington USA, December 9-11, 2013 p1

    [43]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [44]

    Guo X, Wu X D, Xu Y, Yu B, Wu K 2014 IEEE MTT-S International Microwave Symposium (IMS) Tampa USA, June 1-6, 2014 p1

    [45]

    Chen P Y, Alu A 2013 7th Europe Conference on Antennas and Propagation (EuCAP) Gothenburg Sweden April 8-12, 2013 p697

    [46]

    Li X M, Zhu H W, Wang K L, Cao A Y, Wei J Q, Li C Y, Jia Y, Li Z, Li X, Wu D H 2010 Adv. Mater. 22 2743

    [47]

    Fan G F, Zhu H W, Wang K L, Wei J Q, Li X M, Shu Q K, Guo N, Wu D H 2011 ACS Appl. Mater. Inter. 3 721

    [48]

    Feng T T, Xie D, Lin Y X, Zhao H M, Chen Y, Tian H, Ren T L, Li X, Li Z, Wang K L, Wu D H, Zhu H W 2012 Nanoscale 4 2130

    [49]

    Miao X, Tongay S, Petterson M K, Berke K, Rinzler A G, Appletion B R, Hebard A F 2012 Nano Lett. 12 2745

    [50]

    Cui T X, L R T, Huang Z H, Chen S X, Zhang Z X, Gan X, Jia Y, Li X M, Wang K L, Wu D H, Kang F Y 2013 J. Mater. Chem. A 1 5736

    [51]

    Shi E Z, Li H B, Yang L, Zhang L H, Li Z, Li P X, Shang Y Y, Wu S T, Li X M, Wei J Q, Wang K L, Zhu H W, Wu D H, Fang Y, Cao A Y 2013 Nano Lett. 13 1776

    [52]

    Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J 2008 Adv. Funct. Mater. 18 1518

    [53]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297

    [54]

    An X, Liu F, Jung Y J, Kar S 2013 Nano Lett. 13 909

    [55]

    L P, Zhang X J, Zhang X W, Deng W, Jie J S 2013 IEEE Electron Device Lett. 34 1337

    [56]

    Zhu M, Li X M, Guo Y B, Li X, Sun P Z, Zang X B, Wang K L, Zhong M L, Wu D H, Zhu H W 2014 Nanoscale 6 4909

    [57]

    Li X M, Zhu M, Du M D, L Z, Zhang L, Li Y C, Yang T T, Li X, Wang K L, Zhu H W, Fang Y 2016 Small 12 595

    [58]

    Kim J, Joo S S, Lee K W, Kim J H, Shin D H, Choi S H 2014 ACS Appl. Mater. Inter. 6 20880

    [59]

    Zhu M, Zhang L, Li X M, He Y J, Li X, Guo F M, Zang X B, Wang K L, Xie D, Li X H, Wei B Q, Zhu H W 2015 J. Mater. Chem. A 3 8133

    [60]

    Liu M, Yin X B, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [61]

    Koester S J, Li M 2012 Appl. Phys. Lett. 100 171107

    [62]

    Liu M, Yin X B, Zhang X 2012 Nano Lett. 12 1482

    [63]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [64]

    Mohsin M, Schall D, Otto M, Noculak A, Neumaier D, Kurz H 2014 Opt. Express 22 15292

    [65]

    Ye S, Wang Z, Tang L, Zhang Y, Lu R, Liu Y 2014 Opt. Express 22 26173

    [66]

    Midrio M, Boscolo S, Moresco M 2012 Opt. Express 20 23144

    [67]

    Xu C, Jin Y C, Yang L Z, Yang J Y, Jiang X Q 2012 Opt. Express 20 22398

    [68]

    Du W, Li E P, Hao R 2014 IEEE Photon. Tech. L. 26 2008

    [69]

    Huang B H, Lu W B, Li X B, Wang J, Liu Z 2016 Appl. Opt. 55 5598

    [70]

    Hao R, Du W, Li E P 2013 Appl. Phys. Lett. 103 061116

    [71]

    Hu Y T, Pantouvaki M, Brems S, Asselberghs I, Huyghebaert C, Geisler M, Alessandri C, Baers R, Absil P, van Thourhout D 2014 60th Annual IEEE International Electron Devices Meeting (IEDM) San Francisco USA, December 15-17, 2014 p561

    [72]

    Hu Y T, Pantouvaki M, Campenhout J V, Brems S, Asselberghs I, Huyghebaert C, Absil P, van Thourhout D 2016 Laser Photon. Rev. 10 307

    [73]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [74]

    Shin H J, Choi W M, Choi D, Han G H, Yoon S M, Park H K, Kim S W, Jin Y W, Lee S Y, Kim J M, Choi J Y, Lee Y H 2010 J. Am. Chem. Soc. 132 15603

    [75]

    Choi D, Choi M Y, Choi W M, Shin H J, Park H K, Seo J S, Park J, Yoon S M, Chae S J, Lee Y H, Kim S W, Choi J Y, Lee S Y, Kim J M 2010 Adv. Mater. 22 2187

    [76]

    Huang W, Wang G L, Gao F Q, Qiao Z T, Wang G, Tao L, Chen M J, Yu F, Yang H C, Sun L F 2014 Nanoscale 6 3921

    [77]

    Huang W B, Zhao Y, Wang G L, Qiao Z, Gao F Q, Wang X W, Wang G, Deng Y, Fan X K, Zhang J, Duan R F, Qiu X H, Sun L F 2015 RSC Adv. 5 34065

    [78]

    Wang G 2015 Ph. D. Dissertation (Beijing: National Center for Nonoscience and Technology) (in Chinese) [王钢 2015 博士学位论文(北京: 国家纳米科学中心)]

    [79]

    Zou Y, Li F, Zhu Z H, Zhao M W, Xu X G, Su X Y 2011 Eur. Phys. J. B 81 475

    [80]

    Yavari F, Chen Z, Thomas A V, Ren W, Cheng H M, Koratkar N 2011 Sci. Rep. 1 166

    [81]

    Cheng Z, Li Q, Li Z, Zhou Q, Fang Y 2010 Nano Lett. 10 1864

    [82]

    Zhang T, Cheng Z, Wang Y, Li Z, Wang C, Li Y, Fang Y 2010 Nano Lett. 10 4738

    [83]

    Sudibya H G, He Q, Zhang H, Chen P 2011 ACS Nano 5 1990

    [84]

    Li X, Shi J J, Pang J C, Liu W H, Liu H Z, Wang X L 2014 J. Nanomater. 2014 547139

    [85]

    Dong X C, Shi Y M, Huang W, Chen P, Li L J 2010 Adv. Mater. 22 1649

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178

    [3]

    Huang X, Yin Z Y, Wu S X, Qi X Y, He Q Y, Zhang Q C, Yan Q Y, Boey F, Zhang H 2011 Small 7 1876

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fundenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [5]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [6]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [7]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [8]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [9]

    Hwang E H, Adam S, Das Sarma S 2007 Phys. Rev. Lett. 98 186806

    [10]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [11]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206

    [12]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov S, Booth T J, Roth S 2007 Nature 446 60

    [13]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [14]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [15]

    Han M Y, Ozyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [16]

    Chen Z, Lin Y M, Rooks M J, Avouris P 2007 Physica E 40 228

    [17]

    Trauzettel B, Bulaev D V, Loss D, Burkard G 2007 Nat. Phys. 3 192

    [18]

    Ohta T, Bostwick A, SeyⅡer T, Horn K, Rotenberg E 2006 Science 313 951

    [19]

    Nilsson J, Castro Neto A H, Guinea F, Peres N M R 2008 Phys. Rev. B 78 045405

    [20]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen R, Wang F 2009 Nature 459 820

    [21]

    Evaldsson M, Zozoulenko I V, Xu H, Heinzel T 2008 Phys. Rev. B 78 161407

    [22]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [23]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M. Shen Y R 2008 Science 320 206

    [24]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stomer H L, Basov D N 2008 Nat. Phys. 4 532

    [25]

    Xia F, Mueller T, Golizadeh-Mojarad R 2009 Nano Lett. 9 1039

    [26]

    Gokus T, Nair R R, Bonetti A, Bohmler M, Ferrari A L, Hartschuh 2009 ACS Nano 3 3963

    [27]

    Luo Z, Vora P M, Mele E J, Johnson C, Kikkawa J M 2009 Appl. Phys. Lett. 94 111909

    [28]

    Kim P, Shi L, Majumdar A, McEuen P L 2001 Phys. Rev. Lett. 87 215502

    [29]

    Pop E, Mann D, Wang Q, Goodson K, Dai H J 2006 Nano Lett. 6 96

    [30]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [31]

    Lemme M C, Echtemeyer T J, Baus M, Kurtz H 2007 IEEE Electron Dev. Lett. 28 282

    [32]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y, Duan X 2010 Nature 467 305

    [33]

    Zhang J X, Wang L, Quhe R, Liu Q, Li H, Yu D, Mei W N, Shi J, Gao Z, Lu J 2013 Sci. Rep. 3 1314

    [34]

    Yu J, Liu G, Sumant A V, Balandin A A 2012 Nano Lett. 12 1603

    [35]

    Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Goergiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S, Ponomarenko L A 2012 Science 335 947

    [36]

    Moon J S, Seo H C, Stratan F, Antcliffe M, Schmitz A, Ross R S, Kiselev A A, Wheeler V D, Nyakiti L O, Gaskill D K, Lee K M, Asbeck P M 2013 IEEE Electron Dev. Lett. 34 1190

    [37]

    Khasanvis S, Habib K M M, Rahman M, Narayanan P, Lake R K, Moritz C A 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NanoArch) Amsterdam, the Netherlands July 4-6, 2012 p69

    [38]

    Johari Z, Hamid F K, Tan M L P, Ahmadi M T, Harun F K, Ismail R 2013 J. Comput. Theor. Nanos. 10 1164

    [39]

    Wessely P J, Wessely Y F, Birinci E, Beckmann K, Riedinger B, Schwalke U 2012 Physica E 44 1132

    [40]

    Wessely P J, Schwalke U 2013 8th International Conference on Design and Technology of Integrated Systems in Nanoscale Era (IEEE DTIS) New York, USA, March 26-28, 2013 p12

    [41]

    Wessely P J, Schwalke U 2014 9th IEEE International Conference on Design and Technology of Integrated Systems In Nanoscale Era (DTIS) Santorini May 6-8, 2014 p1

    [42]

    Sordan R, Ferrari A C 2013 IEEE International Electron Devices Meeting (IEDM) Washington USA, December 9-11, 2013 p1

    [43]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [44]

    Guo X, Wu X D, Xu Y, Yu B, Wu K 2014 IEEE MTT-S International Microwave Symposium (IMS) Tampa USA, June 1-6, 2014 p1

    [45]

    Chen P Y, Alu A 2013 7th Europe Conference on Antennas and Propagation (EuCAP) Gothenburg Sweden April 8-12, 2013 p697

    [46]

    Li X M, Zhu H W, Wang K L, Cao A Y, Wei J Q, Li C Y, Jia Y, Li Z, Li X, Wu D H 2010 Adv. Mater. 22 2743

    [47]

    Fan G F, Zhu H W, Wang K L, Wei J Q, Li X M, Shu Q K, Guo N, Wu D H 2011 ACS Appl. Mater. Inter. 3 721

    [48]

    Feng T T, Xie D, Lin Y X, Zhao H M, Chen Y, Tian H, Ren T L, Li X, Li Z, Wang K L, Wu D H, Zhu H W 2012 Nanoscale 4 2130

    [49]

    Miao X, Tongay S, Petterson M K, Berke K, Rinzler A G, Appletion B R, Hebard A F 2012 Nano Lett. 12 2745

    [50]

    Cui T X, L R T, Huang Z H, Chen S X, Zhang Z X, Gan X, Jia Y, Li X M, Wang K L, Wu D H, Kang F Y 2013 J. Mater. Chem. A 1 5736

    [51]

    Shi E Z, Li H B, Yang L, Zhang L H, Li Z, Li P X, Shang Y Y, Wu S T, Li X M, Wei J Q, Wang K L, Zhu H W, Wu D H, Fang Y, Cao A Y 2013 Nano Lett. 13 1776

    [52]

    Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J 2008 Adv. Funct. Mater. 18 1518

    [53]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297

    [54]

    An X, Liu F, Jung Y J, Kar S 2013 Nano Lett. 13 909

    [55]

    L P, Zhang X J, Zhang X W, Deng W, Jie J S 2013 IEEE Electron Device Lett. 34 1337

    [56]

    Zhu M, Li X M, Guo Y B, Li X, Sun P Z, Zang X B, Wang K L, Zhong M L, Wu D H, Zhu H W 2014 Nanoscale 6 4909

    [57]

    Li X M, Zhu M, Du M D, L Z, Zhang L, Li Y C, Yang T T, Li X, Wang K L, Zhu H W, Fang Y 2016 Small 12 595

    [58]

    Kim J, Joo S S, Lee K W, Kim J H, Shin D H, Choi S H 2014 ACS Appl. Mater. Inter. 6 20880

    [59]

    Zhu M, Zhang L, Li X M, He Y J, Li X, Guo F M, Zang X B, Wang K L, Xie D, Li X H, Wei B Q, Zhu H W 2015 J. Mater. Chem. A 3 8133

    [60]

    Liu M, Yin X B, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [61]

    Koester S J, Li M 2012 Appl. Phys. Lett. 100 171107

    [62]

    Liu M, Yin X B, Zhang X 2012 Nano Lett. 12 1482

    [63]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [64]

    Mohsin M, Schall D, Otto M, Noculak A, Neumaier D, Kurz H 2014 Opt. Express 22 15292

    [65]

    Ye S, Wang Z, Tang L, Zhang Y, Lu R, Liu Y 2014 Opt. Express 22 26173

    [66]

    Midrio M, Boscolo S, Moresco M 2012 Opt. Express 20 23144

    [67]

    Xu C, Jin Y C, Yang L Z, Yang J Y, Jiang X Q 2012 Opt. Express 20 22398

    [68]

    Du W, Li E P, Hao R 2014 IEEE Photon. Tech. L. 26 2008

    [69]

    Huang B H, Lu W B, Li X B, Wang J, Liu Z 2016 Appl. Opt. 55 5598

    [70]

    Hao R, Du W, Li E P 2013 Appl. Phys. Lett. 103 061116

    [71]

    Hu Y T, Pantouvaki M, Brems S, Asselberghs I, Huyghebaert C, Geisler M, Alessandri C, Baers R, Absil P, van Thourhout D 2014 60th Annual IEEE International Electron Devices Meeting (IEDM) San Francisco USA, December 15-17, 2014 p561

    [72]

    Hu Y T, Pantouvaki M, Campenhout J V, Brems S, Asselberghs I, Huyghebaert C, Absil P, van Thourhout D 2016 Laser Photon. Rev. 10 307

    [73]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [74]

    Shin H J, Choi W M, Choi D, Han G H, Yoon S M, Park H K, Kim S W, Jin Y W, Lee S Y, Kim J M, Choi J Y, Lee Y H 2010 J. Am. Chem. Soc. 132 15603

    [75]

    Choi D, Choi M Y, Choi W M, Shin H J, Park H K, Seo J S, Park J, Yoon S M, Chae S J, Lee Y H, Kim S W, Choi J Y, Lee S Y, Kim J M 2010 Adv. Mater. 22 2187

    [76]

    Huang W, Wang G L, Gao F Q, Qiao Z T, Wang G, Tao L, Chen M J, Yu F, Yang H C, Sun L F 2014 Nanoscale 6 3921

    [77]

    Huang W B, Zhao Y, Wang G L, Qiao Z, Gao F Q, Wang X W, Wang G, Deng Y, Fan X K, Zhang J, Duan R F, Qiu X H, Sun L F 2015 RSC Adv. 5 34065

    [78]

    Wang G 2015 Ph. D. Dissertation (Beijing: National Center for Nonoscience and Technology) (in Chinese) [王钢 2015 博士学位论文(北京: 国家纳米科学中心)]

    [79]

    Zou Y, Li F, Zhu Z H, Zhao M W, Xu X G, Su X Y 2011 Eur. Phys. J. B 81 475

    [80]

    Yavari F, Chen Z, Thomas A V, Ren W, Cheng H M, Koratkar N 2011 Sci. Rep. 1 166

    [81]

    Cheng Z, Li Q, Li Z, Zhou Q, Fang Y 2010 Nano Lett. 10 1864

    [82]

    Zhang T, Cheng Z, Wang Y, Li Z, Wang C, Li Y, Fang Y 2010 Nano Lett. 10 4738

    [83]

    Sudibya H G, He Q, Zhang H, Chen P 2011 ACS Nano 5 1990

    [84]

    Li X, Shi J J, Pang J C, Liu W H, Liu H Z, Wang X L 2014 J. Nanomater. 2014 547139

    [85]

    Dong X C, Shi Y M, Huang W, Chen P, Li L J 2010 Adv. Mater. 22 1649

  • [1] Wan Zhen, Li Cheng, Liu Yu-Jian, Song Xue-Feng, Fan Shang-Chun. Research progress of electromechanical graphene resonant sensors. Acta Physica Sinica, 2022, 71(12): 126801. doi: 10.7498/aps.71.20220215
    [2] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] Cui Yan, Xia Cai-Juan, Su Yao-Heng, Zhang Bo-Qun, Zhang Ting-Ting, Liu Yang, Hu Zhen-Yang, Tang Xiao-Jie. Switching characteristics of anthraquinone molecular devices based on graphene electrodes. Acta Physica Sinica, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [4] Zhang Jin-Feng, Xu Jia-Min, Ren Ze-Yang, He Qi, Xu Sheng-Rui, Zhang Chun-Fu, Zhang Jin-Cheng, Hao Yue. Characteristics of hydrogen-terminated single crystalline diamond field effect transistors with different surface orientations. Acta Physica Sinica, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [5] Zhang Meng, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei. Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [6] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [7] Song Hang, Liu Jie, Chen Chao, Ba Long. Graphene-based field effect transistor with ion-gel film gate. Acta Physica Sinica, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [8] Mo Jun, Feng Guo-Ying, Yang Mo-Chou, Liao Yu, Zhou Hao, Zhou Shou-Huan1\2Graphene-based broadband all-optical spatial modulator. Acta Physica Sinica, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [9] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [10] Li Cheng, Cai Li, Wang Sen, Liu Bao-Jun, Cui Huan-Qing, Wei Bo. Switching characteristics of all-spin logic devices based on graphene interconnects. Acta Physica Sinica, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [11] Ren Ze-Yang, Zhang Jin-Feng, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Quan Ru-Dai, Hao Yue. Characteristics of H-terminated single crystalline diamond field effect transistors. Acta Physica Sinica, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [12] Huang Le, Zhang Zhi-Yong, Peng Lian-Mao. High performance graphene Hall sensors. Acta Physica Sinica, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [13] Lu Qi, Lyu Hong-Ming, Wu Xiao-Ming, Wu Hua-Qiang, Qian He. Research progress of graphene radio frequency devices. Acta Physica Sinica, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [14] Feng Wei, Zhang Rong, Cao Jun-Cheng. Progress of terahertz devices based on graphene. Acta Physica Sinica, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [15] Liao Wen-Ying, Fan Wan-De, Li Hai-Peng, Sui Jia-Nan, Cao Xue-Wei. Quasi-crystal photonic fiber surface plasmon resonance sensor. Acta Physica Sinica, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [16] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [17] Yin Wei-Hong, Han Qin, Yang Xiao-Hong. The progress of semiconductor photoelectric devices based on graphene. Acta Physica Sinica, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
    [18] Huang Qin, Leng Feng-Chun, Liang Wen-Yao, Dong Jian-Wen, Wang He-Zhou. Sensitive temperature sensor based on phase properties of photonic crystal. Acta Physica Sinica, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [19] Zhang Jun-Yan, Deng Tian-Song, Shen Xin, Zhu Kong-Tao, Zhang Qi-Feng, Wu Jin-Lei. Electrical and optical properties of single As-doped ZnO nanowire field effect transistors. Acta Physica Sinica, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [20] Chen Chang-Hong, Huang De-Xiu, Zhu Peng. Infrared absorption of VO2 based Mott transition field effect transistor dependent on optical phonon in α-SiN: H films. Acta Physica Sinica, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
Metrics
  • Abstract views:  8137
  • PDF Downloads:  897
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2017
  • Accepted Date:  06 September 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map