搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶金刚石氢终端场效应晶体管特性

任泽阳 张金风 张进成 许晟瑞 张春福 全汝岱 郝跃

引用本文:
Citation:

单晶金刚石氢终端场效应晶体管特性

任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃

Characteristics of H-terminated single crystalline diamond field effect transistors

Ren Ze-Yang, Zhang Jin-Feng, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Quan Ru-Dai, Hao Yue
PDF
导出引用
  • 基于微波等离子体化学气相淀积生长的单晶金刚石制作了栅长为2 m的耗尽型氢终端金刚石场效应晶体管,并对器件特性进行了分析.器件的饱和漏电流在栅压为-6 V时达到了96 mA/mm,但是在-6 V时栅泄漏电流过大.在-3.5 V的安全工作栅压下,饱和漏电流达到了77 mA/mm.在器件的饱和区,宽5.9 V的栅电压范围内,跨导随着栅电压的增加而近线性增大到30 mS/mm.通过对器件导通电阻和电容-电压特性的分析,氢终端单晶金刚石的二维空穴气浓度达到了1.991013 cm-2,并且迁移率和载流子浓度均随着栅压向正偏方向的移动而逐渐增大.分析认为,沟道中高密度的载流子、大的栅电容以及迁移率的逐渐增加是引起跨导在很大的栅压范围内近线性增加的原因.
    Diamond has been considered as an ultimate semiconductor, which has great potential applications in high power, high frequency semiconductor devices. Up to now, the twodimensional hole gas (2DHG) induced on the hydrogenterminated diamond surface is used most popularly to form electric conduction in diamond semiconductor at room temperature, due to the obstacle caused by lacking of easily-ionized dopants. A 200-nm-thick single crystalline diamond is grown by microwave plasma chemical vapor deposition on the type-Ib high-pressure high-temperature synthesized diamond substrate. Then the sample is treated in hydrogen plasma atmosphere to achieve hydrogen terminated diamond surface. The sample is characterized by X-ray photoelectron spectroscopy and atomic force microscope. After that, the normally-on hydrogen-terminated diamond field effect transistors are achieved. The device with a gate length of 2 μup m delivers a saturation leakage current of 96 mA/mm at gate voltage VGS=-6 V, at which, however, the gate leakage current is too large. The saturation current reaches 77 mA/mm at VGS=-3.5 V with safety. The device shows typical long-channel behavior. The gate voltage varies almost linearly. In the saturation region of the device, the transconductance (gm) increases near-linearly to 30 mS/mm with the increase of the gate voltage in a range of 5.9 V. Analyses of the on-resistance and capacitance-voltage (C-V) data show that the 2DHG under the gate achieves a density as high as 1.99×1013 cm-2, and the extracted channel carrier density and mobility are always kept increasing with VGS negatively shifting to -2.5 V. The nearlinearly increasing of gm in a large VGS range is attributed to high 2DHG density, quite a large gate capacitance (good gate control), and increased mobility. The relevant researches of improving the carrier mobility in the channel and of finding proper gate dielectrics to improve the forward gate breakdown voltage are underway.
      通信作者: 张金风, jfzhang@xidian.edu.cn
      Corresponding author: Zhang Jin-Feng, jfzhang@xidian.edu.cn
    [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Baliga B J 1989 IEEE Electron Dev. Lett. 10 455

    [3]

    Zhang C M, Zheng Y B, Jiang Z G, L X Y, Hou X, Hu S, Liu W J 2010 Chin. Phys. Lett. 27 232

    [4]

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 228101 (in Chinese)[房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安2015 64 228101]

    [5]

    Yamasaki S, Gheeraert E, Koide Y 2014 MRS Bull. 39 499

    [6]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249

    [7]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783

    [8]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electron Dev. Lett. 33 1111

    [9]

    Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 013510

    [10]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 080112

    [11]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Dev. Lett. 33 1471

    [12]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570

    [13]

    Kawarada H 2012 Jpn. J. Appl. Phys. 51 090111

    [14]

    Matsudaira H, Miyamoto S, Ishizaka H, Umezawa H, Kawarada H 2004 IEEE Electron Dev. Lett. 25 480

    [15]

    Feng Z B, Chayahara A, Mokuno Y, Yamada H, Shikata S 2010 Diamond Relat. Mater. 19 171

    [16]

    Vardi A, Tordjman M, Del Alamo J A, Kalish R 2014 IEEE Electron Dev. Lett. 35 1320

    [17]

    Wang W, Hu C, Li S Y, Li F N, Liu Z C, Wang F, Fu J, Wang H X 2015 J. Nanomater. 2015 124640

    [18]

    Wang W, Fu K, Hu C, Li F N, Liu Z C, Li S Y, Lin F, Fu J, Wang J J, Wang H X 2016 Diamond Relat. Mater. 69 237

    [19]

    Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diamond Relat. Mater. 43 43

    [20]

    Calvani P, Corsaro A, Girolami M, Sinisi F, Trucchi D M, Rossi M C, Conte G, Carta S, Giovine E, Lavanga S, Limiti E, Ralchenko V 2009 Diamond Relat. Mater. 18 786

    [21]

    Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796

    [22]

    Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509

    [23]

    Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741

    [24]

    Cappelluti F, Ghione G, Russell S A O, Moran D A J, Verona C, Limiti E 2015 Appl. Phys. Lett. 106 783

    [25]

    Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E, Bergonzo P 2003 Appl. Phys. Lett. 82 2266

    [26]

    Hirama K, Takayanagi H, Yamauchi S, Jingu Y, Umezawa H, Kawarada H 2007 IEEE International Electron Devices Meeting Washington, D.C., United States, December 10-12, 2007 p873

  • [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Baliga B J 1989 IEEE Electron Dev. Lett. 10 455

    [3]

    Zhang C M, Zheng Y B, Jiang Z G, L X Y, Hou X, Hu S, Liu W J 2010 Chin. Phys. Lett. 27 232

    [4]

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 228101 (in Chinese)[房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安2015 64 228101]

    [5]

    Yamasaki S, Gheeraert E, Koide Y 2014 MRS Bull. 39 499

    [6]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249

    [7]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783

    [8]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electron Dev. Lett. 33 1111

    [9]

    Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 013510

    [10]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 080112

    [11]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Dev. Lett. 33 1471

    [12]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570

    [13]

    Kawarada H 2012 Jpn. J. Appl. Phys. 51 090111

    [14]

    Matsudaira H, Miyamoto S, Ishizaka H, Umezawa H, Kawarada H 2004 IEEE Electron Dev. Lett. 25 480

    [15]

    Feng Z B, Chayahara A, Mokuno Y, Yamada H, Shikata S 2010 Diamond Relat. Mater. 19 171

    [16]

    Vardi A, Tordjman M, Del Alamo J A, Kalish R 2014 IEEE Electron Dev. Lett. 35 1320

    [17]

    Wang W, Hu C, Li S Y, Li F N, Liu Z C, Wang F, Fu J, Wang H X 2015 J. Nanomater. 2015 124640

    [18]

    Wang W, Fu K, Hu C, Li F N, Liu Z C, Li S Y, Lin F, Fu J, Wang J J, Wang H X 2016 Diamond Relat. Mater. 69 237

    [19]

    Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diamond Relat. Mater. 43 43

    [20]

    Calvani P, Corsaro A, Girolami M, Sinisi F, Trucchi D M, Rossi M C, Conte G, Carta S, Giovine E, Lavanga S, Limiti E, Ralchenko V 2009 Diamond Relat. Mater. 18 786

    [21]

    Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796

    [22]

    Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509

    [23]

    Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741

    [24]

    Cappelluti F, Ghione G, Russell S A O, Moran D A J, Verona C, Limiti E 2015 Appl. Phys. Lett. 106 783

    [25]

    Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E, Bergonzo P 2003 Appl. Phys. Lett. 82 2266

    [26]

    Hirama K, Takayanagi H, Yamauchi S, Jingu Y, Umezawa H, Kawarada H 2007 IEEE International Electron Devices Meeting Washington, D.C., United States, December 10-12, 2007 p873

  • [1] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性.  , 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管.  , 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] 邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃. 氢终端单晶金刚石反相器特性.  , 2022, 71(8): 088102. doi: 10.7498/aps.71.20211447
    [4] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器.  , 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [5] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型.  , 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [6] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性.  , 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [7] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器.  , 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [8] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究.  , 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [9] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究.  , 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [10] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响.  , 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [11] 刘畅, 卢继武, 吴汪然, 唐晓雨, 张睿, 俞文杰, 王曦, 赵毅. 超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性.  , 2015, 64(16): 167305. doi: 10.7498/aps.64.167305
    [12] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响.  , 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [13] 颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安. 氮氢共掺杂金刚石中氢的典型红外特征峰的表征.  , 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [14] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究.  , 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [15] 刘峰斌, 汪家道, 陈大融, 赵明, 何广平. 不同密度氢吸附金刚石(100)表面的微观结构.  , 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [16] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性.  , 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [17] 刘峰斌, 汪家道, 陈大融. 氢、氧终端掺硼金刚石薄膜的电子结构.  , 2008, 57(2): 1171-1176. doi: 10.7498/aps.57.1171
    [18] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性.  , 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [19] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究.  , 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
    [20] 李荣斌, 戴永兵, 胡晓君, 沈荷生, 何贤昶. 能量粒子轰击金刚石的计算机模拟.  , 2003, 52(12): 3135-3141. doi: 10.7498/aps.52.3135
计量
  • 文章访问数:  7178
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-20
  • 修回日期:  2017-08-23
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map