-
基于微波等离子体化学气相淀积生长的单晶金刚石制作了栅长为2 m的耗尽型氢终端金刚石场效应晶体管,并对器件特性进行了分析.器件的饱和漏电流在栅压为-6 V时达到了96 mA/mm,但是在-6 V时栅泄漏电流过大.在-3.5 V的安全工作栅压下,饱和漏电流达到了77 mA/mm.在器件的饱和区,宽5.9 V的栅电压范围内,跨导随着栅电压的增加而近线性增大到30 mS/mm.通过对器件导通电阻和电容-电压特性的分析,氢终端单晶金刚石的二维空穴气浓度达到了1.991013 cm-2,并且迁移率和载流子浓度均随着栅压向正偏方向的移动而逐渐增大.分析认为,沟道中高密度的载流子、大的栅电容以及迁移率的逐渐增加是引起跨导在很大的栅压范围内近线性增加的原因.Diamond has been considered as an ultimate semiconductor, which has great potential applications in high power, high frequency semiconductor devices. Up to now, the twodimensional hole gas (2DHG) induced on the hydrogenterminated diamond surface is used most popularly to form electric conduction in diamond semiconductor at room temperature, due to the obstacle caused by lacking of easily-ionized dopants. A 200-nm-thick single crystalline diamond is grown by microwave plasma chemical vapor deposition on the type-Ib high-pressure high-temperature synthesized diamond substrate. Then the sample is treated in hydrogen plasma atmosphere to achieve hydrogen terminated diamond surface. The sample is characterized by X-ray photoelectron spectroscopy and atomic force microscope. After that, the normally-on hydrogen-terminated diamond field effect transistors are achieved. The device with a gate length of 2 μup m delivers a saturation leakage current of 96 mA/mm at gate voltage VGS=-6 V, at which, however, the gate leakage current is too large. The saturation current reaches 77 mA/mm at VGS=-3.5 V with safety. The device shows typical long-channel behavior. The gate voltage varies almost linearly. In the saturation region of the device, the transconductance (gm) increases near-linearly to 30 mS/mm with the increase of the gate voltage in a range of 5.9 V. Analyses of the on-resistance and capacitance-voltage (C-V) data show that the 2DHG under the gate achieves a density as high as 1.99×1013 cm-2, and the extracted channel carrier density and mobility are always kept increasing with VGS negatively shifting to -2.5 V. The nearlinearly increasing of gm in a large VGS range is attributed to high 2DHG density, quite a large gate capacitance (good gate control), and increased mobility. The relevant researches of improving the carrier mobility in the channel and of finding proper gate dielectrics to improve the forward gate breakdown voltage are underway.
-
Keywords:
- diamond /
- hydrogen-terminated /
- field effect transistors
[1] Wort C J H, Balmer R S 2008 Mater. Today 11 22
[2] Baliga B J 1989 IEEE Electron Dev. Lett. 10 455
[3] Zhang C M, Zheng Y B, Jiang Z G, L X Y, Hou X, Hu S, Liu W J 2010 Chin. Phys. Lett. 27 232
[4] Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 228101 (in Chinese)[房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安2015 64 228101]
[5] Yamasaki S, Gheeraert E, Koide Y 2014 MRS Bull. 39 499
[6] Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249
[7] Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783
[8] Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electron Dev. Lett. 33 1111
[9] Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 013510
[10] Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 080112
[11] Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Dev. Lett. 33 1471
[12] Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570
[13] Kawarada H 2012 Jpn. J. Appl. Phys. 51 090111
[14] Matsudaira H, Miyamoto S, Ishizaka H, Umezawa H, Kawarada H 2004 IEEE Electron Dev. Lett. 25 480
[15] Feng Z B, Chayahara A, Mokuno Y, Yamada H, Shikata S 2010 Diamond Relat. Mater. 19 171
[16] Vardi A, Tordjman M, Del Alamo J A, Kalish R 2014 IEEE Electron Dev. Lett. 35 1320
[17] Wang W, Hu C, Li S Y, Li F N, Liu Z C, Wang F, Fu J, Wang H X 2015 J. Nanomater. 2015 124640
[18] Wang W, Fu K, Hu C, Li F N, Liu Z C, Li S Y, Lin F, Fu J, Wang J J, Wang H X 2016 Diamond Relat. Mater. 69 237
[19] Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diamond Relat. Mater. 43 43
[20] Calvani P, Corsaro A, Girolami M, Sinisi F, Trucchi D M, Rossi M C, Conte G, Carta S, Giovine E, Lavanga S, Limiti E, Ralchenko V 2009 Diamond Relat. Mater. 18 786
[21] Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796
[22] Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509
[23] Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741
[24] Cappelluti F, Ghione G, Russell S A O, Moran D A J, Verona C, Limiti E 2015 Appl. Phys. Lett. 106 783
[25] Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E, Bergonzo P 2003 Appl. Phys. Lett. 82 2266
[26] Hirama K, Takayanagi H, Yamauchi S, Jingu Y, Umezawa H, Kawarada H 2007 IEEE International Electron Devices Meeting Washington, D.C., United States, December 10-12, 2007 p873
-
[1] Wort C J H, Balmer R S 2008 Mater. Today 11 22
[2] Baliga B J 1989 IEEE Electron Dev. Lett. 10 455
[3] Zhang C M, Zheng Y B, Jiang Z G, L X Y, Hou X, Hu S, Liu W J 2010 Chin. Phys. Lett. 27 232
[4] Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 228101 (in Chinese)[房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安2015 64 228101]
[5] Yamasaki S, Gheeraert E, Koide Y 2014 MRS Bull. 39 499
[6] Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249
[7] Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783
[8] Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electron Dev. Lett. 33 1111
[9] Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 013510
[10] Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 080112
[11] Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Dev. Lett. 33 1471
[12] Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570
[13] Kawarada H 2012 Jpn. J. Appl. Phys. 51 090111
[14] Matsudaira H, Miyamoto S, Ishizaka H, Umezawa H, Kawarada H 2004 IEEE Electron Dev. Lett. 25 480
[15] Feng Z B, Chayahara A, Mokuno Y, Yamada H, Shikata S 2010 Diamond Relat. Mater. 19 171
[16] Vardi A, Tordjman M, Del Alamo J A, Kalish R 2014 IEEE Electron Dev. Lett. 35 1320
[17] Wang W, Hu C, Li S Y, Li F N, Liu Z C, Wang F, Fu J, Wang H X 2015 J. Nanomater. 2015 124640
[18] Wang W, Fu K, Hu C, Li F N, Liu Z C, Li S Y, Lin F, Fu J, Wang J J, Wang H X 2016 Diamond Relat. Mater. 69 237
[19] Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diamond Relat. Mater. 43 43
[20] Calvani P, Corsaro A, Girolami M, Sinisi F, Trucchi D M, Rossi M C, Conte G, Carta S, Giovine E, Lavanga S, Limiti E, Ralchenko V 2009 Diamond Relat. Mater. 18 786
[21] Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796
[22] Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509
[23] Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741
[24] Cappelluti F, Ghione G, Russell S A O, Moran D A J, Verona C, Limiti E 2015 Appl. Phys. Lett. 106 783
[25] Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E, Bergonzo P 2003 Appl. Phys. Lett. 82 2266
[26] Hirama K, Takayanagi H, Yamauchi S, Jingu Y, Umezawa H, Kawarada H 2007 IEEE International Electron Devices Meeting Washington, D.C., United States, December 10-12, 2007 p873
计量
- 文章访问数: 7178
- PDF下载量: 313
- 被引次数: 0