Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Response to 14 MeV neutrons for single-crystal diamond detectors

Huang Guang-Wei Wu Kun Chen Ye Li Lin-Xiang Zhang Si-Yuan Wang Zun-Gang Zhu Hong-Ying Zhou Chun-Zhi Zhang Yi-Yun Liu Zhi-Qiang Yi Xiao-Yan Li Jin-Min

Citation:

Response to 14 MeV neutrons for single-crystal diamond detectors

Huang Guang-Wei, Wu Kun, Chen Ye, Li Lin-Xiang, Zhang Si-Yuan, Wang Zun-Gang, Zhu Hong-Ying, Zhou Chun-Zhi, Zhang Yi-Yun, Liu Zhi-Qiang, Yi Xiao-Yan, Li Jin-Min
PDF
HTML
Get Citation
  • Single-crystal diamond (SCD) detectors promise to have applications in neutron spectrometers and fusion neutron monitoring under high flux deuterium plasma. The response to 14 MeV neutrons for the SCD detector is studied in this paper. A high-performance SCD neutron detector is developed by processing cleaning wafer, depositing metal electrodes, annealing and wire-bonding. A fast-neutrons monitoring system containing the detector, preamplifier and digital multichannel analyzer is constructed, and the response to 14 MeV neutrons for the detector is measured on the K-400 neutron generator supported by China Academy of Engineering Physics. In addition, computational simulations of the energy deposition and detection efficiency of 14 MeV neutron through diamond are performed via Geant4 toolkit based on evaluated nuclear data libraries of ENDF-VIII.0, JEFF-3.3, BROND-3.1, JENDL-4.0u and CENDL-3.1. The methods of widening the simulation spectrum and calibration of measuring spectrum are presented in order that simulation results are in reasonable agreement with measured values. The results indicate that the energy deposition of 14 MeV neutrons incident on the 12C can be more accurately calculated with CENDL-3.1 than with other data libraries. The elastic scattering and reaction of 12C(n, 3α) are described more accurately with the CENDL-3.1, and the characteristic peaks of 12C(n, α)9Be matched well the calibrated testing spectrum and the after-widening simulation spectrum, with a difference between the simulated detection efficiency and measuring results being as low as 0.61%. The outcome measures are described as the standardized mean difference, with a detection efficiency of (3.31 × 10–4 ± 0.11 × 10–4) counts/n, an energy resolution of 4.02% ± 0.09%, and a peaking channel of 1797.24 ± 0.80, which suggest that the detector keeps stable well under a high neutron flux of 2 × 1010 n/s for as long as 2 h. The results demonstrate that the SCD detector can be a promising candidate for monitoring 14 MeV D-T neutrons.
      Corresponding author: Zhou Chun-Zhi, zhoucz6622@163.com ; Zhang Yi-Yun, yyzhang@semi.ac.cn
    [1]

    Thomas D, Bedogni R, Méndez R, Thompson AZimbal A 2018 Radiat. Prot. Dosim. 180 21Google Scholar

    [2]

    Bertalot L, Krasilnikov V, Core L, Saxena A, Yukhnov N, Barnsley R, Walsh M 2019 J. Fusion Energ. 38 283Google Scholar

    [3]

    Cazzaniga C, Sunden E A, Binda F, et al. 2014 Rev. Sci. Instrum. 85 43506Google Scholar

    [4]

    罗均华 2021 14 MeV中子物理及截面测量 (北京: 科学出版社) 第17页

    Luo J H 2021 14MeV Neutron Physics and Cross Section Measurements (Beijing: Science Press) p17 (in Chinese)

    [5]

    Osipenko M, Ripani M, Ricco G, Caiffi B, Pompili F, Pillon M, Angelone M, Verona-Rinati G, Cardarelli R, Mila G, Argiro S 2015 Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 799 207Google Scholar

    [6]

    Weilhammer P, Adam W, Bauer C, et al. 1998 Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 409 264Google Scholar

    [7]

    Isberg J, Hammersberg J, Johansson E, Wikström T, Twitchen D J, Whitehead A J, Coe S E, Scarsbrook G A 2002 Science (American Association for the Advancement of Science) 297 1670Google Scholar

    [8]

    Lee C, Ban C, Lee H, Choo K, Jun B 2019 Appl. Radiat. Isotopes 152 25Google Scholar

    [9]

    Tallaire A, Collins A T, Charles D, Achard J, Sussmann R, Gicquel A, Newton M E, Edmonds A M, Cruddace R J 2006 Diam. Relat. Mater. 15 1700Google Scholar

    [10]

    Laub W U, Kaulich T W, Nüsslin F 1999 Physics in Medicine & Biology 44 2183Google Scholar

    [11]

    Schirru F, Kisielewicz K, Nowak T, Marczewska B 2010 Journal of Physics. D, Applied Physics 43 265101Google Scholar

    [12]

    Zbořil MZimbal A 2014 Rev. Sci. Instrum. 85 11DGoogle Scholar

    [13]

    Pillon M, Angelone M, Batistoni P, Loreti S, Milocco A 2016 Fusion Eng. Des. 106 93Google Scholar

    [14]

    Dankowski J, Drozdowicz K, Kurowski A, Wiącek U, Nowak T, Zabila Y 2017 Diam. Relat. Mater. 79 88Google Scholar

    [15]

    Giacomelli L, Nocente M, Rebai M, et al. 2016 Rev. Sci. Instrum. 87 11DGoogle Scholar

    [16]

    Element sixTM https://www.e6.com/ [2021-5-12]

    [17]

    Pillon M, Angelone M, Krása A, Plompen A J M, Schillebeeckx P, Sergi M L 2011 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 640 185Google Scholar

    [18]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 250Google Scholar

    [19]

    Ge Z G, Zhao Z X, Xia H H, Zhuang Y X, Liu T J, Zhang J SWu H C 2011 J. Korean Phys. Soc. 59 1052Google Scholar

    [20]

    李福龙, 张雄杰, 王仁波 2013 核电子学与探测技术 33 1266Google Scholar

    Li F L, Zhang X J, Wang R B 2013 Nuclear Electronics & Detection Technology 33 1266Google Scholar

    [21]

    石睿 2018 博士学位论文(成都: 成都理工大学)

    Shi R 2018 Ph. D. Dissertation (Chengdu: Chengdu University of Technology) (in Chinese)

  • 图 1  (a) 金刚石探测器结构; (b) 探测器实物

    Figure 1.  (a) The schematic diagram of the single-crystal diamond detector structure; (b) the as-fabricated device for test.

    图 2  (a) 金刚石探测器中子能谱测量系统; (b) 14 MeV中子测量实验场景

    Figure 2.  (a) Schematic diagram of the setup for measurement of neutron spectrum; (b) experimental scenario for measurement of 14 MeV neutrons.

    图 3  沉积能量粒子及其占比

    Figure 3.  Energy-deposited particles and their proportion.

    图 4  不同粒子所在事件能量沉积情况 (a) 12C能量沉积; (b) 9Be能量沉积; (c) α粒子能量沉积情况; (d) 13C能量沉积; (e) γ射线能量沉积; (f) 电子能量沉积

    Figure 4.  Energy deposition for different particles in their events: (a)–(f) are for 12C, 9Be, alpha particles, 13C, gamma rays and electrons, respectively.

    图 5  不同核数据库能量沉积对比(内插图是能量沉积谱的局部放大)

    Figure 5.  Comparison of energy deposition calculated via different nuclear databases. A close-up view of the energy-deposition spectra is in the inset.

    图 6  实测谱与刻度、展宽后仿真谱对比(内插图是仿真谱和实测谱的局部放大)

    Figure 6.  Comparison of measured spectrum with calibrated and widen simulated spectrum. A close-up view of the two spectrums is in the inset.

    图 7  金刚石探测器长时间稳定性测量结果 (a) 探测效率随测量时间的变化; (b) 能量分辨率随测量时间的变化; (c)峰位道址随测量时间的变化

    Figure 7.  Long-term stability measurement results of the single-crystal diamond detector: (a), (b) and (c) respectively represent the results of detection efficiency, energy resolution, and peak channel that change over measuring time.

    表 1  12C与中子主要相互作用方式

    Table 1.  Main interaction modes between 12C and neutron.

    反应方式反应Q 值/MeV带电粒子产物能量
    12C(n, α)9Be5.7018.299
    12C(n, 3α)7.2756.725
    12C(n, n)12C03.977
    12C(n, p)12B12.5871.413
    12C(n, d)11B13.7320.268
    DownLoad: CSV

    表 2  不同核数据库12C(n, α)9Be反应特征峰统计结果

    Table 2.  Statistical results of characteristic peaks of 12C(n, α)9Be reaction calculated via different nuclear databases.

    核数据库ENDF-VIII.0JEFF-3.3BROND-3.1JENDL-4.0uCENDL-3.1
    粒子沉积数/个976696129814109699862
    探测效率/(10–4 counts·n–1)3.263.203.273.663.29
    统计不确定度/%1.011.021.010.951.01
    DownLoad: CSV
    Baidu
  • [1]

    Thomas D, Bedogni R, Méndez R, Thompson AZimbal A 2018 Radiat. Prot. Dosim. 180 21Google Scholar

    [2]

    Bertalot L, Krasilnikov V, Core L, Saxena A, Yukhnov N, Barnsley R, Walsh M 2019 J. Fusion Energ. 38 283Google Scholar

    [3]

    Cazzaniga C, Sunden E A, Binda F, et al. 2014 Rev. Sci. Instrum. 85 43506Google Scholar

    [4]

    罗均华 2021 14 MeV中子物理及截面测量 (北京: 科学出版社) 第17页

    Luo J H 2021 14MeV Neutron Physics and Cross Section Measurements (Beijing: Science Press) p17 (in Chinese)

    [5]

    Osipenko M, Ripani M, Ricco G, Caiffi B, Pompili F, Pillon M, Angelone M, Verona-Rinati G, Cardarelli R, Mila G, Argiro S 2015 Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 799 207Google Scholar

    [6]

    Weilhammer P, Adam W, Bauer C, et al. 1998 Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 409 264Google Scholar

    [7]

    Isberg J, Hammersberg J, Johansson E, Wikström T, Twitchen D J, Whitehead A J, Coe S E, Scarsbrook G A 2002 Science (American Association for the Advancement of Science) 297 1670Google Scholar

    [8]

    Lee C, Ban C, Lee H, Choo K, Jun B 2019 Appl. Radiat. Isotopes 152 25Google Scholar

    [9]

    Tallaire A, Collins A T, Charles D, Achard J, Sussmann R, Gicquel A, Newton M E, Edmonds A M, Cruddace R J 2006 Diam. Relat. Mater. 15 1700Google Scholar

    [10]

    Laub W U, Kaulich T W, Nüsslin F 1999 Physics in Medicine & Biology 44 2183Google Scholar

    [11]

    Schirru F, Kisielewicz K, Nowak T, Marczewska B 2010 Journal of Physics. D, Applied Physics 43 265101Google Scholar

    [12]

    Zbořil MZimbal A 2014 Rev. Sci. Instrum. 85 11DGoogle Scholar

    [13]

    Pillon M, Angelone M, Batistoni P, Loreti S, Milocco A 2016 Fusion Eng. Des. 106 93Google Scholar

    [14]

    Dankowski J, Drozdowicz K, Kurowski A, Wiącek U, Nowak T, Zabila Y 2017 Diam. Relat. Mater. 79 88Google Scholar

    [15]

    Giacomelli L, Nocente M, Rebai M, et al. 2016 Rev. Sci. Instrum. 87 11DGoogle Scholar

    [16]

    Element sixTM https://www.e6.com/ [2021-5-12]

    [17]

    Pillon M, Angelone M, Krása A, Plompen A J M, Schillebeeckx P, Sergi M L 2011 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 640 185Google Scholar

    [18]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 250Google Scholar

    [19]

    Ge Z G, Zhao Z X, Xia H H, Zhuang Y X, Liu T J, Zhang J SWu H C 2011 J. Korean Phys. Soc. 59 1052Google Scholar

    [20]

    李福龙, 张雄杰, 王仁波 2013 核电子学与探测技术 33 1266Google Scholar

    Li F L, Zhang X J, Wang R B 2013 Nuclear Electronics & Detection Technology 33 1266Google Scholar

    [21]

    石睿 2018 博士学位论文(成都: 成都理工大学)

    Shi R 2018 Ph. D. Dissertation (Chengdu: Chengdu University of Technology) (in Chinese)

  • [1] Li Bo, Li Ling, Zhu Jing-Jun, Lin Wei-Ping, An Zhu. Measurements of K-shell ionization cross sections and L-shell X-ray production cross sections of Al, Ti, Cu, Ag, and Au thin films by low-energy electron impact. Acta Physica Sinica, 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [2] Xun Zhi-Peng, Hao Da-Peng. Monte Carlo simulation of bond percolation on square lattice with complex neighborhoods. Acta Physica Sinica, 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [3] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo. Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [4] Zhou Bin, Yu Quan-Zhi, Zhang Hong-Bin, Zhang Xue-Ying, Ju Yong-Qin, Chen Liang, Ruan Xi-Chao. Measurement of radioactive residual nuclides induced in Cu target by 80.5 MeV/u carbon ions. Acta Physica Sinica, 2021, 70(7): 072501. doi: 10.7498/aps.70.20201503
    [5] Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source. Acta Physica Sinica, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [6] Zhang Jin-Feng, Xu Jia-Min, Ren Ze-Yang, He Qi, Xu Sheng-Rui, Zhang Chun-Fu, Zhang Jin-Cheng, Hao Yue. Characteristics of hydrogen-terminated single crystalline diamond field effect transistors with different surface orientations. Acta Physica Sinica, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [7] Tian Yong-Shun, Hu Zhi-Liang, Tong Jian-Fei, Chen Jun-Yang, Peng Xiang-Yang, Liang Tian-Jiao. Design of beam shaping assembly based on 3.5 MeV radio-frequency quadrupole proton accelerator for boron neutron capture therapy. Acta Physica Sinica, 2018, 67(14): 142801. doi: 10.7498/aps.67.20180380
    [8] Geng Chuan-Wen,  Xia Yu-Hao,  Zhao Hong-Yang,  Fu Qiu-Ming,  Ma Zhi-Bin. Effect of edge inclination of single crystal diamond on homoepitaxial growth. Acta Physica Sinica, 2018, 67(24): 248101. doi: 10.7498/aps.67.20181537
    [9] Jia Qing-Gang, Zhang Tian-Kui, Xu Hai-Bo. Optimization design of a Gamma-to-electron spectrometer for high energy gammas induced by fusion. Acta Physica Sinica, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [10] Zhang Fa-Qiang, Qi Jian-Min, Zhang Jian-Hua, Li Lin-Bo, Chen Ding-Yang, Xie Hong-Wei, Yang Jian-Lun, Chen Jin-Chuan. A method of fast-neutron imaging with energy threshold based on an imaging plate. Acta Physica Sinica, 2014, 63(12): 128701. doi: 10.7498/aps.63.128701
    [11] Hua Yu-Chao, Dong Yuan, Cao Bing-Yang. Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Acta Physica Sinica, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [12] Yang Yi-Wei, Yan Xiao-Song, Liu Rong, Lu Xin-Xin, Jiang Li, Wang Mei, Lin Ju-Fang. Measurements and analyses of uranium reaction rates on a depleted uranium shell with D-T neutrons. Acta Physica Sinica, 2013, 62(2): 022801. doi: 10.7498/aps.62.022801
    [13] Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi. A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface. Acta Physica Sinica, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [14] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [15] Xiong Kai-Guo, Feng Guo-Lin, Hu Jing-Guo, Wan Shi-Quan, Yang Jie. Monte Carlo simulation of the record-breaking high temperature events of climate changes. Acta Physica Sinica, 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [16] Gao Fei, Ryoko Yamada, Mitsuo Watanabe, Liu Hua-Feng. Use of Monte Carlo simulations for the scatter events analysis of PET scanners. Acta Physica Sinica, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [17] Xu Lan-Qing, Li Hui, Xiao Zheng-Ying. Discussion on backscattered photon numbers and their scattering events in a turbid media. Acta Physica Sinica, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [18] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [19] Wang Zhi-Jun, Dong Li-Fang, Shang Yong. Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond. Acta Physica Sinica, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
Metrics
  • Abstract views:  6771
  • PDF Downloads:  172
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2021
  • Accepted Date:  09 June 2021
  • Available Online:  07 October 2021
  • Published Online:  20 October 2021

/

返回文章
返回
Baidu
map