搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶金刚石边缘表面倾斜角度对同质外延生长的影响

耿传文 夏禹豪 赵洪阳 付秋明 马志斌

引用本文:
Citation:

单晶金刚石边缘表面倾斜角度对同质外延生长的影响

耿传文, 夏禹豪, 赵洪阳, 付秋明, 马志斌

Effect of edge inclination of single crystal diamond on homoepitaxial growth

Geng Chuan-Wen, Xia Yu-Hao, Zhao Hong-Yang, Fu Qiu-Ming, Ma Zhi-Bin
PDF
导出引用
  • 利用微波等离子体化学气相沉积法,对单晶金刚石(100)晶面边缘进行精细切割抛光处理,形成偏离(100)晶面不同角度的倾斜面,在CH4/H2反应气体中进行同质外延生长,研究单晶金刚石边缘不同角度倾斜面对边缘金刚石外延生长的影响.实验结果表明,边缘倾斜面角度对边缘的单晶外延生长质量有影响,随着单晶金刚石边缘倾斜面角度的增大,边缘多晶金刚石数量先减少后增多,在倾斜角3.8°时边缘呈现完整的单晶外延生长特性.分析认为,边缘不同角度的倾斜面会改变周围电场强度和等离子体密度,导致到达衬底表面的含碳前驱物发生改变,倾斜面台阶表面的含碳前驱物浓度低于能形成层状台阶生长的临界浓度是减弱单晶金刚石生长过程中边缘效应的主要原因.
    Polycrystalline diamond is easy to appear at the edge of single crystal diamond grown by homogeneous epitaxial growth, which makes it difficult to enlarge the two-dimensional surface area of single crystal diamond. In this study, the microwave plasma chemical vapor deposition (MPCVD) is used, the edge of the single crystal diamond (100) crystal face is finely cut and polished to form an inclined surface which is different from the (100) crystal plane at different angles. After being pretreatment, homogeneous epitaxial growth is carried out in a double-substrate waveguide-type MPCVD device with CH4/H2 reaction gas. At the same time, the variation of plasma near the inclined plane of (100) crystal edge is analyzed by optical emission spectroscopy to study the effect of the tilting on the growth of the diamond edge. The experimental results show that the angle of the inclined surface of the edge has an effect on the quality of single crystal epitaxial growth of the edge. As the angle of the inclined surface of the single crystal diamond increases, the quantity of edge polycrystalline diamond first decreases and then increases. At an oblique angle of 3.8°, the edge exhibits complete single crystal epitaxial growth characteristics, which conduces to expand the surface area of single crystal diamond. According to the analysis, the inclined surface at different angle changes the surrounding electric field strength and plasma density of the edge, resulting in the change of carbon-containing precursors reaching the surface of the substrate. When the concentration of carbon-containing precursors on the inclined step surface is higher than the growth threshold of layered step, excessive carbon-containing precursors will constantly collide with each other and accumulate to form polycrystalline diamond on the step. When the concentration is lower than the growth threshold of layered step, the carbon-containing precursors on the surface of the substrate will be laid out to form a layered step. Therefore, the edge effect during the growth of single crystal diamond is weakened at the tilt angle of 3.8°, which leads the concentration of carbon-containing precursors on the inclined step surface to be lower than the growth threshold of layered step.
    • 基金项目: 国家自然科学基金(批准号:15G006)和中国电子科技集团公司第四十六研究所创新基金(批准号:CJ20150701)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 15G006) and the Innovation Fund of the 46th Research Institute of China Electronics Technology Group Corporation, China (Grant No. CJ20150701).
    [1]

    Matsumoto S, Sato Y, Kamo M, Setaka N 1982 Jpn. J. Appl. Phys. 21 183

    [2]

    Bray K, Kato H, Previdi R, et al. 2017 Nanoscale 10 4028

    [3]

    Prestopino G, Marinelli M, Milani E 2017 Appl. Phys. Lett. 111 143504

    [4]

    Chen J L, Zhang S, Cheng H J, Xu Y K 2016 The 29s Academic Exchange Meeting of the Society of Carbon Materials of the Chinese Society of Metals Shizuishan, China, October 20, 2015 p23

    [5]

    Nad S, Gu Y, Asmussen J 2015 Diamond Relat. Mater. 60 26

    [6]

    Kaneko J H, Fujita F, Konno Y, Gotoh T, Nishi N 2012 Diamond Relat. Mater. 26 45

    [7]

    Lobaev M A, Gorbachev A M, Bogdanov S A 2017 EPJ Web of Conferences 149 02003

    [8]

    Ma Z, Wu C, Wang J, Zhao H, Zhang L 2016 Diamond Relat. Mater. 66 135

    [9]

    Tallaire A, Achard J, Silva F, Sussmann R S, Gicquel A 2004 Phys. Status Solidi 201 2419

    [10]

    Hemley R J, Mao H K, Yan C S 2010 US Patent 7 820 131

    [11]

    Yamada H, Chayahara A, Mokuno Y, Horino Y, Shikata S 2006 Diamond Relat. Mater. 15 1383

    [12]

    Tomellini M, Polin R, Sessa V 1991 J. Appl. Phys. 70 7573

    [13]

    Lee N, Badzian A 1997 Diamond Relat. Mater. 6 130

  • [1]

    Matsumoto S, Sato Y, Kamo M, Setaka N 1982 Jpn. J. Appl. Phys. 21 183

    [2]

    Bray K, Kato H, Previdi R, et al. 2017 Nanoscale 10 4028

    [3]

    Prestopino G, Marinelli M, Milani E 2017 Appl. Phys. Lett. 111 143504

    [4]

    Chen J L, Zhang S, Cheng H J, Xu Y K 2016 The 29s Academic Exchange Meeting of the Society of Carbon Materials of the Chinese Society of Metals Shizuishan, China, October 20, 2015 p23

    [5]

    Nad S, Gu Y, Asmussen J 2015 Diamond Relat. Mater. 60 26

    [6]

    Kaneko J H, Fujita F, Konno Y, Gotoh T, Nishi N 2012 Diamond Relat. Mater. 26 45

    [7]

    Lobaev M A, Gorbachev A M, Bogdanov S A 2017 EPJ Web of Conferences 149 02003

    [8]

    Ma Z, Wu C, Wang J, Zhao H, Zhang L 2016 Diamond Relat. Mater. 66 135

    [9]

    Tallaire A, Achard J, Silva F, Sussmann R S, Gicquel A 2004 Phys. Status Solidi 201 2419

    [10]

    Hemley R J, Mao H K, Yan C S 2010 US Patent 7 820 131

    [11]

    Yamada H, Chayahara A, Mokuno Y, Horino Y, Shikata S 2006 Diamond Relat. Mater. 15 1383

    [12]

    Tomellini M, Polin R, Sessa V 1991 J. Appl. Phys. 70 7573

    [13]

    Lee N, Badzian A 1997 Diamond Relat. Mater. 6 130

  • [1] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用.  , 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [2] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结.  , 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [3] 黄广伟, 吴坤, 陈晔, 李林祥, 张思远, 王尊刚, 朱红英, 周春芝, 张逸韵, 刘志强, 伊晓燕, 李晋闽. 单晶金刚石探测器对14 MeV单能中子的响应.  , 2021, 70(20): 202901. doi: 10.7498/aps.70.20210891
    [4] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究.  , 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [5] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性.  , 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [6] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移.  , 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [7] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼.  , 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [8] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀.  , 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [9] 艾立强, 张相雄, 陈民, 熊大曦. 类金刚石薄膜在硅基底上的沉积及其热导率.  , 2016, 65(9): 096501. doi: 10.7498/aps.65.096501
    [10] 刘聪, 汪建华, 翁俊. 高质量高取向(100)面金刚石膜的可控性生长.  , 2015, 64(2): 028101. doi: 10.7498/aps.64.028101
    [11] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响.  , 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [12] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究.  , 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [13] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究.  , 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [14] 韩道丽, 赵元黎, 赵海波, 宋天福, 梁二军. 化学气相沉积法制备定向碳纳米管阵列.  , 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [15] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长.  , 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [16] 马丙现, 姚 宁, 杨仕娥, 鲁占灵, 樊志勤, 张兵临. 氢的强化刻蚀对金刚石薄膜品质的影响与sp2杂化碳原子的存在形态.  , 2004, 53(7): 2287-2291. doi: 10.7498/aps.53.2287
    [17] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响.  , 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [18] 刘存业, 刘 畅. CVD金刚石膜的结构分析.  , 2003, 52(6): 1479-1483. doi: 10.7498/aps.52.1479
    [19] 闫桂沈, 李贺军, 郝志彪. 热解碳化学气相沉积中的多重定态和非平衡相变的研究.  , 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱.  , 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  6686
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-15
  • 修回日期:  2018-10-15
  • 刊出日期:  2019-12-20

/

返回文章
返回
Baidu
map