Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride

Chen Ling-Xiu Wang Hui-Shan Jiang Cheng-Xin Chen Chen Wang Hao-Min

Citation:

Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride

Chen Ling-Xiu, Wang Hui-Shan, Jiang Cheng-Xin, Chen Chen, Wang Hao-Min
PDF
HTML
Get Citation
  • Graphene, as a typical representative of the two-dimensional material family, has received a wide attention due to its excellent physical and chemical properties. Graphene nanoribbon (GNR) is graphene in a width of several to a few tens of nanometers. GNRs not only inherit most of the excellent properties of graphene, but also have their own specific properties such as band gap opening and spin-polarized edge states, which make it the potential candidate in graphene based electronics in the future. Hexagonal boron nitride (h-BN), which has similar lattice constant with graphene, normally serves as an ideal substrate for graphene and GNRs. It can not only effectively preserve their intrinsic properties, but also benefit for the fabrication of electrical devices via popular semiconductor processes. In this paper, we reviewed the development history of research of graphene and GNRs on h-BN in recent years. The recent progress of physical properties is also discussed. In order to realize the large scale production of graphene and GNRs on h-BN, high quality h-BN multilayer is necessary. In addition, recent progresses about h-BN preparation methods are presented, and the progresses could pave the way for the further application of GNRs in the electronics. Finally, the research direction of graphene and GNRs on h-BN in the future is discussed.
      Corresponding author: Wang Hao-Min, hmwang@mail.sim.ac.cn
    • Funds: Project supported by the National Key R&D program (Grant No. 2017YFF0206106), the National Natural Science Foundation of China (Grant No. 51772317), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB30000000), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 16ZR1442700), and Shanghai “Super Postdoctor” Program and the China Postdoctoral Science Foundation, China (Grant Nos. 2019T120366, 2019M651620).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [4]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [6]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [7]

    Geim A K 2009 Science 324 1530Google Scholar

    [8]

    Pakdel A, Bando Y, Golberg D 2014 Chem. Soc. Rev. 43 934Google Scholar

    [9]

    Yang H, Gao F, Dai M, Jia D, Zhou Y, Hu P 2017 J. Semi. 38 031004Google Scholar

    [10]

    Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W 2016 Small 12 2942Google Scholar

    [11]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [12]

    Yankowitz M, Xue J, LeRoy B J 2014 J. Phys. Condens. Matter. 26 303201Google Scholar

    [13]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382Google Scholar

    [14]

    Tang S, Wang H, Zhang Y, Li A, Xie H, Liu X, Liu L, Li T, Huang F, Xie X, Jiang M 2013 Sci. Rep. 3 2666Google Scholar

    [15]

    Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy B J 2011 Nat. Mater. 10 282Google Scholar

    [16]

    Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291Google Scholar

    [17]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G 2013 Nat. Mater. 12 792Google Scholar

    [18]

    Tang S, Ding G, Xie X, Chen J, Wang C, Ding X, Huang F, Lu W, Jiang M 2012 Carbon 50 329Google Scholar

    [19]

    Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Muller D A, Park J 2012 Nature 488 627Google Scholar

    [20]

    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J, Ajayan P M 2013 Nat. Nanotechnol. 8 119Google Scholar

    [21]

    Gong Y, Shi G, Zhang Z, Zhou W, Jung J, Gao W, Ma L, Yang Y, Yang S, You G, Vajtai R, Xu Q, MacDonald A H, Yakobson B I, Lou J, Liu Z, Ajayan P M 2014 Nat. Commun. 5 3193Google Scholar

    [22]

    Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P, Gu G 2014 Science 343 163Google Scholar

    [23]

    Lu G, Wu T, Yang P, Yang Y, Jin Z, Chen W, Jia S, Wang H, Zhang G, Sun J, Ajayan P M, Lou J, Xie X, Jiang M 2017 Adv. Sci. 4 1700076Google Scholar

    [24]

    Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519Google Scholar

    [25]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar

    [26]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [27]

    Topsakal M, Sevinçli H, Ciraci S 2008 Appl. Phys. Lett. 92 173118Google Scholar

    [28]

    Wang S, Talirz L, Pignedoli C A, Feng X, Mullen K, Fasel R, Ruffieux P 2016 Nat. Commun. 7 11507Google Scholar

    [29]

    Wu S, Liu B, Shen C, Li S, Huang X, Lu X, Chen P, Wang G, Wang D, Liao M, Zhang J, Zhang T, Wang S, Yang W, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Wang W, Zhang G 2018 Phys. Rev. Lett. 120 216601Google Scholar

    [30]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jap. 65 1920Google Scholar

    [31]

    Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872Google Scholar

    [32]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877Google Scholar

    [33]

    Jiao L, Wang X, Diankov G, Wang H, Dai H 2010 Nat. Nanotechnol. 5 321Google Scholar

    [34]

    Han M Y, Ozyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805Google Scholar

    [35]

    Chen Z, Lin Y M, Rooks M J, Avouris P 2007 Phys. E: Low-dim. Sys. Nano 40 228

    [36]

    Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E, Zhang G 2010 Adv. Mater. 22 4014Google Scholar

    [37]

    Wang X, Dai H 2010 Nat. Chem. 2 661Google Scholar

    [38]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229Google Scholar

    [39]

    Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer W A 2010 Nat. Nanotechnol. 5 727Google Scholar

    [40]

    Nevius M S, Wang F, Mathieu C, Barrett N, Sala A, Mentes T O, Locatelli A, Conrad E H 2014 Nano Lett. 14 6080Google Scholar

    [41]

    Jacobberger R M, Kiraly B, Fortin-Deschenes M, Levesque P L, McElhinny K M, Brady G J, Rojas Delgado R, Singha Roy S, Mannix A, Lagally M G, Evans P G, Desjardins P, Martel R, Hersam M C, Guisinger N P, Arnold M S 2015 Nat. Commun. 6 8006Google Scholar

    [42]

    Jacobberger R M, Arnold M S 2017 ACS Nano 11 8924Google Scholar

    [43]

    Mohamad Yunus R, Miyashita M, Tsuji M, Hibino H, Ago H 2014 Chem. Mater. 26 5215Google Scholar

    [44]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K, Fasel R 2010 Nature 466 470Google Scholar

    [45]

    Ruffieux P, Wang S, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mullen K, Fasel R 2016 Nature 531 489Google Scholar

    [46]

    Talirz L, Ruffieux P, Fasel R 2016 Adv. Mater. 28 6222Google Scholar

    [47]

    Groning O, Wang S, Yao X, Pignedoli C A, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Mullen K, Ruffieux P, Fasel R 2018 Nature 560 209Google Scholar

    [48]

    Chen L, He L, Wang H S, Wang H, Tang S, Cong C, Xie H, Li L, Xia H, Li T, Wu T, Zhang D, Deng L, Yu T, Xie X, Jiang M 2017 Nat. Commun. 8 14703Google Scholar

    [49]

    Magda G Z, Jin X, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang C, Biro L P, Tapaszto L 2014 Nature 514 608Google Scholar

    [50]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [51]

    Tang S, Wang H, Wang H S, Sun Q, Zhang X, Cong C, Xie H, Liu X, Zhou X, Huang F, Chen X, Yu T, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6499Google Scholar

    [52]

    Arjmandi-Tash H, Kalita D, Han Z, Othmen R, Nayak G, Berne C, Landers J, Watanabe K, Taniguchi T, Marty L, Coraux J, Bendiab N, Bouchiat V 2018 J. Phys.: Mater. 1 015003Google Scholar

    [53]

    Cheng T S, Davies A, Summerfield A, Cho Y, Cebula I, Hill R J A, Mellor C J, Khlobystov A N, Taniguchi T, Watanabe K, Beton P H, Foxon C T, Eaves L, Novikov S V 2016 J. Vac. Sci. Tech. B: Nanotech. Micro., Mater. Proc. Meas. Phenom. 34 02l101

    [54]

    Albar J D, Summerfield A, Cheng T S, Davies A, Smith E F, Khlobystov A N, Mellor C J, Taniguchi T, Watanabe K, Foxon C T, Eaves L, Beton P H, Novikov S V 2017 Sci. Rep. 7 6598Google Scholar

    [55]

    Chen L, Wang H, Tang S, He L, Wang H S, Wang X, Xie H, Wu T, Xia H, Li T, Xie X 2017 Nanoscale 9 11475Google Scholar

    [56]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598Google Scholar

    [57]

    Woods C R, Britnell L, Eckmann A, Ma R S, Lu J C, Guo H M, Lin X, Yu G L, Cao Y, Gorbachev R V, Kretinin A V, Park J, Ponomarenko L A, Katsnelson M I, Gornostyrev Y N, Watanabe K, Taniguchi T, Casiraghi C, Gao H J, Geim A K, Novoselov K S 2014 Nat. Phys. 10 451Google Scholar

    [58]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [59]

    Wang G, Wu S, Zhang T, Chen P, Lu X, Wang S, Wang D, Watanabe K, Taniguchi T, Shi D, Yang R, Zhang G 2016 Appl. Phys. Lett. 109 053101Google Scholar

    [60]

    Lu X, Yang W, Wang S, Wu S, Chen P, Zhang J, Zhao J, Meng J, Xie G, Wang D, Wang G, Zhang T T, Watanabe K, Taniguchi T, Yang R, Shi D, Zhang G 2016 Appl. Phys. Lett. 108 113103Google Scholar

    [61]

    Solozhenko V L, Turkevich V Z, Holzapfel W B 1999 J. Phys. Chem. B 103 2903Google Scholar

    [62]

    Hoffman T B, Clubine B, Zhang Y, Snow K, Edgar J H 2014 J. Crys. Grow. 393 114Google Scholar

    [63]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [64]

    Lu G, Wu T, Yuan Q, Wang H, Wang H, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6160Google Scholar

    [65]

    Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91Google Scholar

    [66]

    Ismach A, Chou H, Ferrer D A, Wu Y, McDonnell S, Floresca H C, Covacevich A, Pope C, Piner R, Kim M J, Wallace R M, Colombo L, Ruoff R S 2012 ACS Nano 6 6378Google Scholar

    [67]

    Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Dresselhaus M, Palacios T, Kong J 2012 ACS Nano 6 8583Google Scholar

    [68]

    Yin J, Yu J, Li X, Li J, Zhou J, Zhang Z, Guo W 2015 Small 11 4497Google Scholar

    [69]

    Song X, Gao J, Nie Y, Gao T, Sun J, Ma D, Li Q, Chen Y, Jin C, Bachmatiuk A, Rümmeli M H, Ding F, Zhang Y, Liu Z 2015 Nano Res. 8 3164Google Scholar

    [70]

    Caneva S, Weatherup R S, Bayer B C, Brennan B, Spencer S J, Mingard K, Cabrero-Vilatela A, Baehtz C, Pollard A J, Hofmann S 2015 Nano Lett. 15 1867Google Scholar

    [71]

    Lee J S, Choi S H, Yun S J, Kim Y I, Boandoh S, Park J H, Shin B G, Ko H, Lee S H, Kim Y M, Lee Y H, Kim K K, Kim S M 2018 Science 362 817Google Scholar

  • 图 1  石墨烯纳米带制备研究发展历程

    Figure 1.  Evolutionary overview on graphene nanoribbons (GNRs) fabrication.

    图 2  h-BN表面石墨烯制备 (a) h-BN表面点缺陷处形核得到的石墨烯晶畴[18]; (b) h-BN表面台阶处形核得到的石墨烯条带; (c) h-BN表面气相催化石墨烯生长示意图; (d)不同气相催化剂对石墨烯生长的加速作用[51]; (e)扶手椅型边界的石墨烯的AFM摩擦力图像; (f)锯齿型边界的石墨烯的AFM摩擦力图像[55]

    Figure 2.  Synthesis of high-quality graphene on h-BN: (a) Graphene domains nucleated at defects of h-BN surface[18]; (b) graphene ribbon grown at the step-edge of h-BN; (c) schematic of the gaseous catalyst-assisted graphene growth on h-BN[51]; (d) the growth duration dependence of the domain size for graphene in the presence of silane or germane gaseous catalysts; (e), (f) AFM friction images of grapheneedge alongarmchair (e) and zigzag (f) direction[55].

    图 3  h-BN表面石墨烯制备的不同方案 (a), (b)等离子体辅助CVD方法制备高质量石墨烯[17]; (c)−(e)采用分子束外延法实现h-BN表面石墨烯晶畴制备[54]; (f)通过金属催化在h-BN表面制备石墨烯[52]

    Figure 3.  Different methods for the synthesis of graphene on h-BN: (a), (b) Synthesis of high-quality graphene on h-BN by plasma enhanced CVD[17]; (c)−(e) synthesis of graphene on h-BN by molecular beam epitaxy[54]; (f) synthesis of graphene on h-BN by proximity-catalytic process[52].

    图 4  石墨烯/h-BN异质结物理性质 (a)摩尔条纹示意图[12]; (b)石墨烯与h-BN之间不同晶格常数差异和偏转角对摩尔条纹的影响关系[14]; (c)摩尔条纹图像及超晶格狄拉克点[13]; (d)霍夫斯塔特蝴蝶效应[56]; (e)公度-非公度转变[57]

    Figure 4.  Physical properties of graphene/h-BN heterostructure: (a) Schematic of Moiré pattern[12]; (b) Moiré pattern wavelength and its rotation angle with respect to the h-BN as a function of mis-orientation angle between graphene and h-BN[14]; (c) the existence of moiré pattern and superlattice Dirac points[13]; (d) hofstadter butterfly effect[56]; (e) commensurate-incommensurate transitions[57].

    图 5  h-BN石墨烯纳米带的制备方法 (a)氢等离子各向异性刻蚀法制备石墨烯纳米带[59]; (b), (c) h-BN台阶外延生长的扶手椅型边界(b)和锯齿型边界(c)的石墨烯纳米带[55]; (d)−(i) h-BN表面模板法制备石墨烯纳米带: (d) h-BN的平整表面, (e) h-BN表面镍金属颗粒辅助刻蚀出的纳米沟槽, (f) h-BN纳米沟槽内模板法制备石墨烯纳米带, (g)−(i)与图(d)−(f)相对应的AFM摩擦力图像

    Figure 5.  Different methods for the fabrication of GNRs on h-BN. (a) Fabrication of GNRs on h-BN by anisotropic etching[59]; (b), (c) GNRs with AC-oriented (b) and ZZ-oriented (c) edges are grown from oriented step-edges on h-BN[55]; (d)−(i) formation of GNRs in h-BN trenches: (d) Smooth surface of the h-BN; (e) synthesis of nano-trenches on h-BN by Ni particle-assisted etching; (f) in-plane epitaxial template growth of GNRs via CVD; (g)−(i) AFM friction images corresponding to the schematics shown in (d)−(f).

    图 6  (a)−(c)模板法制备的锯齿型石墨烯纳米带的输运特性: (a)宽度为5 nm的石墨烯纳米带在不同温度条件下电导随背栅电压的转移曲线, (b)实验提取得到的石墨烯纳米带带隙与宽度的变化关系[48], (c)温度为2 K时, 宽度为9 nm的锯齿型石墨烯纳米带在不同磁场条件下电导随背栅电压的转移曲线; (d)氢等离子体各向异性刻蚀法制备的约68 nm宽的锯齿型石墨烯纳米带不同磁场条件下的转移曲线[29]

    Figure 6.  (a)−(c) Electronic transport through embedded ZGNR devices: (a) Conductance (G) of a typical ZGNR device with a width of ~5 nm as a function of the back gate voltage (Vgate) at different temperatures, (b) band gap Eg extracted from experimentaldata for ZGNRs versus their width (w)[48], (c) transfer curves of a ~9 nm ZGNR sample at different magnetic field; (d) thetypical transfer curves at several B from a ZGNR/h-BN device with a width of ~68 nm fabricated by hydrogen-plasma-etching (~3 kΩ contactresistance was subtracted)[29].

    图 7  (a)不同结构氮化硼的相图[61]; (b) h-BN单晶的光镜照片[62]

    Figure 7.  (a) Phase diagram of boron nitride with different structures[61]; (b) optical image of h-BN crystal[62].

    图 8  CVD方法制备h-BN晶畴 (a)在铜镍合金上生长h-BN的示意图; (b)−(e) 分别对应着铜镍合金衬底上不同生长时间下h-BN的扫描电镜图像, 标尺为20 μm, 图(b)中插图的标尺是2 μm[64]; (f)铜(110)面h-BN形核及生长示意图; (g)铜(110)面生长的h-BN晶畴具有相同取向, 插图是得到的均匀h-BN连续膜[65]

    Figure 8.  Synthesis of h-BN by CVD: (a) Schematic illustration showing the procedure of h-BN growth; (b)−(e) SEM images of h-BN grains grown on Cu-Ni alloy for 10, 30, 60 and 90 min, respectively, the scale bars are 20 μm, and in inset in (b) is 2 μm[64]; (f) schematic diagrams of unidirectional growth of h-BN domains grown on Cu(110) surface; (g) SEM image of unidirectionally aligned h-BN domains on Cu(110), inset is the as-grown h-BN films[65].

    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [4]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [6]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [7]

    Geim A K 2009 Science 324 1530Google Scholar

    [8]

    Pakdel A, Bando Y, Golberg D 2014 Chem. Soc. Rev. 43 934Google Scholar

    [9]

    Yang H, Gao F, Dai M, Jia D, Zhou Y, Hu P 2017 J. Semi. 38 031004Google Scholar

    [10]

    Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W 2016 Small 12 2942Google Scholar

    [11]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [12]

    Yankowitz M, Xue J, LeRoy B J 2014 J. Phys. Condens. Matter. 26 303201Google Scholar

    [13]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382Google Scholar

    [14]

    Tang S, Wang H, Zhang Y, Li A, Xie H, Liu X, Liu L, Li T, Huang F, Xie X, Jiang M 2013 Sci. Rep. 3 2666Google Scholar

    [15]

    Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy B J 2011 Nat. Mater. 10 282Google Scholar

    [16]

    Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291Google Scholar

    [17]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G 2013 Nat. Mater. 12 792Google Scholar

    [18]

    Tang S, Ding G, Xie X, Chen J, Wang C, Ding X, Huang F, Lu W, Jiang M 2012 Carbon 50 329Google Scholar

    [19]

    Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Muller D A, Park J 2012 Nature 488 627Google Scholar

    [20]

    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J, Ajayan P M 2013 Nat. Nanotechnol. 8 119Google Scholar

    [21]

    Gong Y, Shi G, Zhang Z, Zhou W, Jung J, Gao W, Ma L, Yang Y, Yang S, You G, Vajtai R, Xu Q, MacDonald A H, Yakobson B I, Lou J, Liu Z, Ajayan P M 2014 Nat. Commun. 5 3193Google Scholar

    [22]

    Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P, Gu G 2014 Science 343 163Google Scholar

    [23]

    Lu G, Wu T, Yang P, Yang Y, Jin Z, Chen W, Jia S, Wang H, Zhang G, Sun J, Ajayan P M, Lou J, Xie X, Jiang M 2017 Adv. Sci. 4 1700076Google Scholar

    [24]

    Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519Google Scholar

    [25]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar

    [26]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [27]

    Topsakal M, Sevinçli H, Ciraci S 2008 Appl. Phys. Lett. 92 173118Google Scholar

    [28]

    Wang S, Talirz L, Pignedoli C A, Feng X, Mullen K, Fasel R, Ruffieux P 2016 Nat. Commun. 7 11507Google Scholar

    [29]

    Wu S, Liu B, Shen C, Li S, Huang X, Lu X, Chen P, Wang G, Wang D, Liao M, Zhang J, Zhang T, Wang S, Yang W, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Wang W, Zhang G 2018 Phys. Rev. Lett. 120 216601Google Scholar

    [30]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jap. 65 1920Google Scholar

    [31]

    Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872Google Scholar

    [32]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877Google Scholar

    [33]

    Jiao L, Wang X, Diankov G, Wang H, Dai H 2010 Nat. Nanotechnol. 5 321Google Scholar

    [34]

    Han M Y, Ozyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805Google Scholar

    [35]

    Chen Z, Lin Y M, Rooks M J, Avouris P 2007 Phys. E: Low-dim. Sys. Nano 40 228

    [36]

    Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E, Zhang G 2010 Adv. Mater. 22 4014Google Scholar

    [37]

    Wang X, Dai H 2010 Nat. Chem. 2 661Google Scholar

    [38]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229Google Scholar

    [39]

    Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer W A 2010 Nat. Nanotechnol. 5 727Google Scholar

    [40]

    Nevius M S, Wang F, Mathieu C, Barrett N, Sala A, Mentes T O, Locatelli A, Conrad E H 2014 Nano Lett. 14 6080Google Scholar

    [41]

    Jacobberger R M, Kiraly B, Fortin-Deschenes M, Levesque P L, McElhinny K M, Brady G J, Rojas Delgado R, Singha Roy S, Mannix A, Lagally M G, Evans P G, Desjardins P, Martel R, Hersam M C, Guisinger N P, Arnold M S 2015 Nat. Commun. 6 8006Google Scholar

    [42]

    Jacobberger R M, Arnold M S 2017 ACS Nano 11 8924Google Scholar

    [43]

    Mohamad Yunus R, Miyashita M, Tsuji M, Hibino H, Ago H 2014 Chem. Mater. 26 5215Google Scholar

    [44]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K, Fasel R 2010 Nature 466 470Google Scholar

    [45]

    Ruffieux P, Wang S, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mullen K, Fasel R 2016 Nature 531 489Google Scholar

    [46]

    Talirz L, Ruffieux P, Fasel R 2016 Adv. Mater. 28 6222Google Scholar

    [47]

    Groning O, Wang S, Yao X, Pignedoli C A, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Mullen K, Ruffieux P, Fasel R 2018 Nature 560 209Google Scholar

    [48]

    Chen L, He L, Wang H S, Wang H, Tang S, Cong C, Xie H, Li L, Xia H, Li T, Wu T, Zhang D, Deng L, Yu T, Xie X, Jiang M 2017 Nat. Commun. 8 14703Google Scholar

    [49]

    Magda G Z, Jin X, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang C, Biro L P, Tapaszto L 2014 Nature 514 608Google Scholar

    [50]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [51]

    Tang S, Wang H, Wang H S, Sun Q, Zhang X, Cong C, Xie H, Liu X, Zhou X, Huang F, Chen X, Yu T, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6499Google Scholar

    [52]

    Arjmandi-Tash H, Kalita D, Han Z, Othmen R, Nayak G, Berne C, Landers J, Watanabe K, Taniguchi T, Marty L, Coraux J, Bendiab N, Bouchiat V 2018 J. Phys.: Mater. 1 015003Google Scholar

    [53]

    Cheng T S, Davies A, Summerfield A, Cho Y, Cebula I, Hill R J A, Mellor C J, Khlobystov A N, Taniguchi T, Watanabe K, Beton P H, Foxon C T, Eaves L, Novikov S V 2016 J. Vac. Sci. Tech. B: Nanotech. Micro., Mater. Proc. Meas. Phenom. 34 02l101

    [54]

    Albar J D, Summerfield A, Cheng T S, Davies A, Smith E F, Khlobystov A N, Mellor C J, Taniguchi T, Watanabe K, Foxon C T, Eaves L, Beton P H, Novikov S V 2017 Sci. Rep. 7 6598Google Scholar

    [55]

    Chen L, Wang H, Tang S, He L, Wang H S, Wang X, Xie H, Wu T, Xia H, Li T, Xie X 2017 Nanoscale 9 11475Google Scholar

    [56]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598Google Scholar

    [57]

    Woods C R, Britnell L, Eckmann A, Ma R S, Lu J C, Guo H M, Lin X, Yu G L, Cao Y, Gorbachev R V, Kretinin A V, Park J, Ponomarenko L A, Katsnelson M I, Gornostyrev Y N, Watanabe K, Taniguchi T, Casiraghi C, Gao H J, Geim A K, Novoselov K S 2014 Nat. Phys. 10 451Google Scholar

    [58]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [59]

    Wang G, Wu S, Zhang T, Chen P, Lu X, Wang S, Wang D, Watanabe K, Taniguchi T, Shi D, Yang R, Zhang G 2016 Appl. Phys. Lett. 109 053101Google Scholar

    [60]

    Lu X, Yang W, Wang S, Wu S, Chen P, Zhang J, Zhao J, Meng J, Xie G, Wang D, Wang G, Zhang T T, Watanabe K, Taniguchi T, Yang R, Shi D, Zhang G 2016 Appl. Phys. Lett. 108 113103Google Scholar

    [61]

    Solozhenko V L, Turkevich V Z, Holzapfel W B 1999 J. Phys. Chem. B 103 2903Google Scholar

    [62]

    Hoffman T B, Clubine B, Zhang Y, Snow K, Edgar J H 2014 J. Crys. Grow. 393 114Google Scholar

    [63]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [64]

    Lu G, Wu T, Yuan Q, Wang H, Wang H, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6160Google Scholar

    [65]

    Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91Google Scholar

    [66]

    Ismach A, Chou H, Ferrer D A, Wu Y, McDonnell S, Floresca H C, Covacevich A, Pope C, Piner R, Kim M J, Wallace R M, Colombo L, Ruoff R S 2012 ACS Nano 6 6378Google Scholar

    [67]

    Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Dresselhaus M, Palacios T, Kong J 2012 ACS Nano 6 8583Google Scholar

    [68]

    Yin J, Yu J, Li X, Li J, Zhou J, Zhang Z, Guo W 2015 Small 11 4497Google Scholar

    [69]

    Song X, Gao J, Nie Y, Gao T, Sun J, Ma D, Li Q, Chen Y, Jin C, Bachmatiuk A, Rümmeli M H, Ding F, Zhang Y, Liu Z 2015 Nano Res. 8 3164Google Scholar

    [70]

    Caneva S, Weatherup R S, Bayer B C, Brennan B, Spencer S J, Mingard K, Cabrero-Vilatela A, Baehtz C, Pollard A J, Hofmann S 2015 Nano Lett. 15 1867Google Scholar

    [71]

    Lee J S, Choi S H, Yun S J, Kim Y I, Boandoh S, Park J H, Shin B G, Ko H, Lee S H, Kim Y M, Lee Y H, Kim K K, Kim S M 2018 Science 362 817Google Scholar

  • [1] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [2] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [3] Zuo Min, Liao Wen-Hu, Wu Dan, Lin Li-E. Electron transport properties of isomeric quinoline molecule junction sandwiched between graphene nanoribbon electrodes. Acta Physica Sinica, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [4] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] Zhang Hua-Lin, Sun Lin, Han Jia-Ning. Magneto-electronic properties of zigzag graphene nanoribbons doped with triangular boron nitride segment. Acta Physica Sinica, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [6] Deng Xiao-Qing, Sun Lin, Li Chun-Xian. Spin transport properties for iron-doped zigzag-graphene nanoribbons interface. Acta Physica Sinica, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [7] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [8] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [9] Wang Ding, Zhang Zhen-Hua, Deng Xiao-Qing, Fan Zhi-Qiang. Electrical and magnetic properties of graphene nanoribbons with BN-chain doping. Acta Physica Sinica, 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [10] Liu Yuan, Yao Jie, Chen Chi, Miao Ling, Jiang Jian-Jun. First-principles study on the piezoelectric properties of hydrogen modified graphene nanoribbons. Acta Physica Sinica, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [11] Li Jun, Zhang Zhen-Hua, Wang Chen-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Rolling effects on electronic characteristics for graphene nanoribbons. Acta Physica Sinica, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [12] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [13] Zeng Yong-Chang, Tian Wen, Zhang Zhen-Hua. Electronic properties of graphene nanoribbons with periodical nanoholes passivated by oxygen. Acta Physica Sinica, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [14] Wang Wei-Dong, Hao Yue, Ji Xiang, Yi Cheng-Long, Niu Xiang-Yu. Relaxation properties of graphene nanoribbons at different ambient temperatures: a molecular dynamics study. Acta Physica Sinica, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [15] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei. The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Acta Physica Sinica, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [16] Tao Qiang, Hu Xiao-Ying, Zhu Pin-Wen. Electronic structure of zigzag graphene nanoribbin terminated by hydroxyl. Acta Physica Sinica, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [17] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [18] Gu Fang, Zhang Jia-Hong, Yang Li-Juan, Gu Bin. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Physica Sinica, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [19] Wang Zhi-Yong, Hu Hui-Fang, Gu Lin, Wang Wei, Jia Jin-Feng. Electronic and optical properties of zigzag graphene nanoribbon with Stone-Wales defect. Acta Physica Sinica, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [20] Tan Chang-Ling, Tan Zhen-Bing, Ma Li, Chen Jun, Yang Fan, Qu Fan-Ming, Liu Guang-Tong, Yang Hai-Fang, Yang Chang-Li, Lü Li. Quantum chaos in graphene nanoribbon quantum dot. Acta Physica Sinica, 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
Metrics
  • Abstract views:  15348
  • PDF Downloads:  261
  • Cited By: 0
Publishing process
  • Received Date:  07 July 2019
  • Accepted Date:  13 August 2019
  • Available Online:  19 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map