-
Graphene nanoribbons (GNRs) are important nanomaterials. A carbon nanotube can be viewed as a GNR rolled into a seamless cylinder. By using the first-principles method based on the density-functional theory, the rolling deformation-dependent electronic characteristics of GNRs, including the band structure (particularly the bandgap), density of states (DOS), and transmission spectrum, are studied systematically. It is found that before all types of GNRs are rolled into carbon nanotubes, they are not sensitive to the rolling deformations, which means that for electronic structures and transport properties, GNRs have a very strong ability to resist the rolling deformations. After GNRs are rolled into nanotubes, zigzag-edge GNRs (ZGNRs) and armchair-edge GNRs (AGNRs) present distinct differences in property, ZGNRs almost maintain unchanged metallic behaviors or become quasi-metallic. But for AGNRs, their electronic characteristics experience large variations, and transformations occur between the quasi-metal and semiconductor with various bandgaps, which might be closely related to the periodical boundary conduction along the direction of tubular circumference of a carbon nanotube and variation of quantum confinement. These studies presented here are of significance for understanding the rolling effects on electronic characteristic and relationship of electronic characteristics between GNRs and carbon nanotubes (structure-property relationship).
-
Keywords:
- graphene nanoribbon /
- electronic characteristics /
- rolling effect /
- density- functional theory
[1] Zeng J, Chen K Q, He J, Zhang X J, Hu W P 2011 Organic Electronics 12 1606
[2] Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502
[3] Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter. 21 235501
[4] Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[5] Li Z, Qian H, Wu J, Gu B, Duan W 2008 Phys. Rev. Lett. 100 206802
[6] Ouyang F P, Xu H, Lin F 2009 Acta phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 58 4132]
[7] Zheng X H, Song L L Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129
[8] Yuan J M, Mao Y L 2011 Acta phys. Sin. 60 103103 (in Chinese) [袁健美, 毛宇亮 2011 60 103103]
[9] Wang X M, Liu H 2011 Acta phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]
[10] Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469
[11] Wang J J, Zhu M Y, Outlaw R A, Zhao X, Manos D M, Holloway B C, Mammana V P 2004 Appl. Phys. Lett. 85 1265
[12] Sun L, Li Q X, Ren H, Su H B, Shi Q W, Yang J L 2008 J. Chem. Phys. 129 074704
[13] Sadrzadeh A, Hua M, Boris I Y 2011 Appl. Phys. Lett. 99 013102
[14] Zhu L Y, Wang J L, Zhang T T, Ma L, Lim C W, Ding F, Zeng X C 2010 Nano Lett. 10 494
[15] Ong Z, Fischetti M V 2012 Phys. Rev. B 86 165422
[16] Tani S, Blanchard F, Tanaka K 2012 Phys. Rev. Lett. 109 166603
[17] Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano Lett. 7 2295
[18] Lee G, Cho K 2009 Phys. Rev. B 79 165440
[19] Balog R, Jorgensen B, Nilsson L 2010 Nat. Mater. 9 315
[20] Zhou J, Wang Q, Sun Q X S, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867
[21] Panchakarla' L S, Subrahmanyam K S, Saha S K 2009 Adv. Mater. 21 4726
[22] Xu Z, Buehler M J 2010 ACS Nano 4 3869
[23] Shenoy V B, Reddy C D, Ramasubramaniam A, Zhang Y W 2008 Phys. Rev. Lett. 101 245501
[24] Taylor J, Guo H, Wang 2001J. Phys. Rev. B 63 245407
[25] Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[26] Zeng J, Chen K Q, Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032
[27] Saito R, Fujita M, Dresselhaus G, Dresselhaus M S 1992 Appl. Phys. Lett. 60 2204
[28] Blase X, Bendict L X, Shirley E L 1994 Phys. Rev. Lett. 72 1878
-
[1] Zeng J, Chen K Q, He J, Zhang X J, Hu W P 2011 Organic Electronics 12 1606
[2] Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502
[3] Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter. 21 235501
[4] Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[5] Li Z, Qian H, Wu J, Gu B, Duan W 2008 Phys. Rev. Lett. 100 206802
[6] Ouyang F P, Xu H, Lin F 2009 Acta phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 58 4132]
[7] Zheng X H, Song L L Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129
[8] Yuan J M, Mao Y L 2011 Acta phys. Sin. 60 103103 (in Chinese) [袁健美, 毛宇亮 2011 60 103103]
[9] Wang X M, Liu H 2011 Acta phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]
[10] Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469
[11] Wang J J, Zhu M Y, Outlaw R A, Zhao X, Manos D M, Holloway B C, Mammana V P 2004 Appl. Phys. Lett. 85 1265
[12] Sun L, Li Q X, Ren H, Su H B, Shi Q W, Yang J L 2008 J. Chem. Phys. 129 074704
[13] Sadrzadeh A, Hua M, Boris I Y 2011 Appl. Phys. Lett. 99 013102
[14] Zhu L Y, Wang J L, Zhang T T, Ma L, Lim C W, Ding F, Zeng X C 2010 Nano Lett. 10 494
[15] Ong Z, Fischetti M V 2012 Phys. Rev. B 86 165422
[16] Tani S, Blanchard F, Tanaka K 2012 Phys. Rev. Lett. 109 166603
[17] Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano Lett. 7 2295
[18] Lee G, Cho K 2009 Phys. Rev. B 79 165440
[19] Balog R, Jorgensen B, Nilsson L 2010 Nat. Mater. 9 315
[20] Zhou J, Wang Q, Sun Q X S, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867
[21] Panchakarla' L S, Subrahmanyam K S, Saha S K 2009 Adv. Mater. 21 4726
[22] Xu Z, Buehler M J 2010 ACS Nano 4 3869
[23] Shenoy V B, Reddy C D, Ramasubramaniam A, Zhang Y W 2008 Phys. Rev. Lett. 101 245501
[24] Taylor J, Guo H, Wang 2001J. Phys. Rev. B 63 245407
[25] Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[26] Zeng J, Chen K Q, Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032
[27] Saito R, Fujita M, Dresselhaus G, Dresselhaus M S 1992 Appl. Phys. Lett. 60 2204
[28] Blase X, Bendict L X, Shirley E L 1994 Phys. Rev. Lett. 72 1878
Catalog
Metrics
- Abstract views: 6631
- PDF Downloads: 1218
- Cited By: 0