-
Zigzag graphene nanoribbon (ZGNR) is important for novel carbon-based spintronic applications. Currently, most of ZGNR spintronic studies focus on the collinear magnetism where the up-spin and down-spin are separated clearly. But in some cases, e.g. doping and adsorption, the magnetization profile can be modulated and thus noncollinear magnetism can occur. In order to shed light on possible noncollinear magnetism in ZGNR, we study non-collinear magnetism and electronic transport of boron or nitrogen-doped zigzag graphene nanoribbon based on noncollinear density functional theory and non-equilibrium Green's function method. For pristine ZGNR, our results show that the ZGNR presents helical magnetization distribution due to noncollinear magnetization in left and right lead. As the ZGNR is doped with boron and nitrogen atoms, the ZGNR shows a characteristic two-zone feature in the magnetization distribution. Near the dopant site, the magnetic moment of carbon atom is small. However, the magnetic moments of carbon atoms in the left (right) region of dopant are close to those of the left (right) lead. Such a feature provides the possibility of constructing domain walls with various widths on the edge of ZGNR. Moreover, the transmission at the Fermi level (E = 0 eV) decreases with the increase of relative angle between magnetizations of left and right lead, indicating that the spin-flip scattering dominates the electronic transport. However, at E = ±0.65 eV, there is a transmission dip with low transmission, which implies that the dopant induces the strong backscattering. To understand the origin of this dip, we calculate the density of states (DOS) and project the DOS onto each atom of doped ZGNR. The projected DOS shows a large and broad peak at E = −0.65 eV for N-doped ZGNR but at E = +0.65 eV for B-doped ZGNR. The consistency between the position of dip in transmission and the position of peak in DOS indicates that the transmission dip mentioned above is attributed to strong backscattering from the dopant-induced bound state. Our theoretical results are expected to be useful for understanding the noncollinear magnetism and spin scattering in the doped ZGNR-based devices. Also, our work provides a considerable insight into the design of ZGNR-based nanoelectronic devices, such as the transistor based on spin transfer torque effect.
-
Keywords:
- graphene nanoribbon /
- electronic transport /
- density functional /
- non-equilibrium Green’s function
[1] Peng B, Zhang H, Shao H Z, Xu Y F, Ni G, Zhang R, Zhu H Y 2016 Phys. Rev. B 94 245420Google Scholar
[2] Wang W X, Zhou M, Li X Q, Li S Y, Wu X S, Duan W H, He L 2016 Phys. Rev. B 93 241403Google Scholar
[3] Cui P, Zhang Q, Zhu H B, Li X X, Wang W Y, Li Q X, Zeng C G, Zhang Z Y 2016 Phys. Rev. Lett. 116 026802Google Scholar
[4] Pan J B, Du S X, Zhang Y Y, Pan L D, Zhang Y F, Gao H J, Pantelides S T 2015 Phys. Rev. B 92 205429Google Scholar
[5] Chen X B, Liu Y Z, Gu B L, Duan W H, Liu F 2014 Phys. Rev. B 90 121403Google Scholar
[6] Wang Z F, Jin S, Liu F 2013 Phys. Rev. Lett. 111 096803Google Scholar
[7] Yue Q, Chang S G, Tan J C, Qin S Q, Kang J, Li J B 2012 Phys. Rev. B 86 235448Google Scholar
[8] Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418Google Scholar
[9] Hu T, Zhou J, Dong J M, Kawazoe Y 2012 Phys. Rev. B 86 125420Google Scholar
[10] Zheng X H, Wang X L, Huang L F, Hao H, Lan J, Zeng Z 2012 Phys. Rev. B 86 081408Google Scholar
[11] Zhou J, Hu T, Dong J M, Kawazoe Y 2012 Phys. Rev. B 86 035434Google Scholar
[12] Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505Google Scholar
[13] Cheng Y C, Wang H T, Zhu Z Y, Zhu Y H, Han Y, Zhang X X, Schwingenschlgl U 2012 Phys. Rev. B 85 073406Google Scholar
[14] Xiang H J, Huang B, Li Z Y, Wei S H, Yang J L, Gong X G 2012 Phys. Rev. X 2 011003Google Scholar
[15] Zhang J C, Huang X P, Yue Y A, Wang J M, Wang X W 2011 Phys. Rev. B 84 235416Google Scholar
[16] Lin X Q, Ni J 2011 Phys. Rev. B 84 075461Google Scholar
[17] Li Y C, Chen X B, Zhou G, Duan W H, Kim Y, Kim M, Ihm J 2011 Phys. Rev. B 83 195443Google Scholar
[18] Li W, Sevinli H, Roche S, Cuniberti G 2011 Phys. Rev. B 83 155416Google Scholar
[19] Zhang Z H, Guo W L, Zeng X C 2010 Phys. Rev. B 82 235423Google Scholar
[20] Wang Z F, Li Q X, Zheng H X, Ren H, Su H B, Shi Q W, Chen J 2007 Phys. Rev. B 75 113406Google Scholar
[21] Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920Google Scholar
[22] Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571Google Scholar
[23] Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411Google Scholar
[24] Ozaki T, Nishio K, Weng H M, Kino H 2010 Phys. Rev. B 81 075422Google Scholar
[25] 邓小清, 孙琳, 李春先 2016 65 068503Google Scholar
Deng X Q, Sun L, Li C X 2016 Acta Phys. Sin. 65 068503Google Scholar
[26] 李彪, 徐大海, 曾晖 2014 63 117102Google Scholar
Li B, Xu D H, Zeng H 2014 Acta Phys. Sin. 63 117102Google Scholar
[27] 林琦, 陈余行, 吴建宝, 孔宗敏 2011 60 097103
Lin Q, Chen Y X, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese)
[28] 李骏, 张振华, 王成志, 邓小清, 范志强 2013 62 036103
Li J, Zhang Z H, Wang C Z, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 036103 (in Chinese)
[29] 胡小会, 许俊敏, 孙立涛 2012 61 047106
Hu X H, Xu J M, Su L T 2012 Acta Phys. Sin. 61 047106 (in Chinese)
[30] 王鼎, 张振华, 邓小清, 范志强 2013 62 207101Google Scholar
Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta. Phys. Sin. 62 207101Google Scholar
[31] Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209Google Scholar
[32] Zhang Y, Yan X H, Guo Y D, Xiao Y 2017 J. Appl. Phys. 121 174303Google Scholar
[33] Li H D, Wang L, Lan Z H, Zheng Y S 2009 Phys. Rev. B 79 155429Google Scholar
[34] Xu B, Yin J, Weng H G, Xia Y D, Wan X G, Liu Z G 2010 Phys. Rev. B 81 205419Google Scholar
[35] Wang B, Wang J, Guo H 2009 Phys. Rev. B 79 165417Google Scholar
[36] Ozaki T, Kino H 2005 Phys. Rev. B 72 045121Google Scholar
[37] Tersoff J, Hamann D R 1985 Phys. Rev. B 31 805Google Scholar
[38] Chantis A N, Smith D L, Fransson J, Balatsky A V 2009 Phys. Rev. B 79 165423Google Scholar
[39] Slonczewski J C 1989 Phys. Rev. B 39 6995Google Scholar
[40] Press M R, Liu F, Khanna S N, Jena P 1989 Phys. Rev. B 40 399Google Scholar
-
图 1 掺杂石墨烯纳米带的结构示意图, 其结构由左右电极、中心区组成, 左右电极磁化之间的偏转角由
$\theta$ 定义, 中心区宽度由Ly给出, buffer是为了计算收敛加入的缓冲区, 红色小球代表掺杂原子Figure 1. Schematic diagram of doped ZGNR which consists of left, right leads and central region. The relative angle between two lead magnetizations is defined by
$\theta$ . The length of central region is defined by Ly. The buffer regions are introduced for the consideration of convergence. The dopant atom is denoted by red sphere.图 4 石墨烯纳米带投影到几个原子上的电子态密度 (a) 未掺杂; (b) 硼掺杂; (c) 氮掺杂. C1代表中心区上边缘的最左边的碳原子, C8代表掺杂原子左侧的最近邻碳原子, B/N代表掺杂原子, C9代表未掺杂时上边缘最中心的碳原子
Figure 4. Projected density of states: (a) Undoped; (b) B-doped; (c) N-doped ZGNR. C1 denotes the leftmost carbon atom on the upper edge. C8 denotes the left nearest neighboring carbon atom of the dopant. B/N is boron/nitrogen atom. C9 denotes the central carbon atom in the upper edge of undoped ZGNR.
-
[1] Peng B, Zhang H, Shao H Z, Xu Y F, Ni G, Zhang R, Zhu H Y 2016 Phys. Rev. B 94 245420Google Scholar
[2] Wang W X, Zhou M, Li X Q, Li S Y, Wu X S, Duan W H, He L 2016 Phys. Rev. B 93 241403Google Scholar
[3] Cui P, Zhang Q, Zhu H B, Li X X, Wang W Y, Li Q X, Zeng C G, Zhang Z Y 2016 Phys. Rev. Lett. 116 026802Google Scholar
[4] Pan J B, Du S X, Zhang Y Y, Pan L D, Zhang Y F, Gao H J, Pantelides S T 2015 Phys. Rev. B 92 205429Google Scholar
[5] Chen X B, Liu Y Z, Gu B L, Duan W H, Liu F 2014 Phys. Rev. B 90 121403Google Scholar
[6] Wang Z F, Jin S, Liu F 2013 Phys. Rev. Lett. 111 096803Google Scholar
[7] Yue Q, Chang S G, Tan J C, Qin S Q, Kang J, Li J B 2012 Phys. Rev. B 86 235448Google Scholar
[8] Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418Google Scholar
[9] Hu T, Zhou J, Dong J M, Kawazoe Y 2012 Phys. Rev. B 86 125420Google Scholar
[10] Zheng X H, Wang X L, Huang L F, Hao H, Lan J, Zeng Z 2012 Phys. Rev. B 86 081408Google Scholar
[11] Zhou J, Hu T, Dong J M, Kawazoe Y 2012 Phys. Rev. B 86 035434Google Scholar
[12] Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505Google Scholar
[13] Cheng Y C, Wang H T, Zhu Z Y, Zhu Y H, Han Y, Zhang X X, Schwingenschlgl U 2012 Phys. Rev. B 85 073406Google Scholar
[14] Xiang H J, Huang B, Li Z Y, Wei S H, Yang J L, Gong X G 2012 Phys. Rev. X 2 011003Google Scholar
[15] Zhang J C, Huang X P, Yue Y A, Wang J M, Wang X W 2011 Phys. Rev. B 84 235416Google Scholar
[16] Lin X Q, Ni J 2011 Phys. Rev. B 84 075461Google Scholar
[17] Li Y C, Chen X B, Zhou G, Duan W H, Kim Y, Kim M, Ihm J 2011 Phys. Rev. B 83 195443Google Scholar
[18] Li W, Sevinli H, Roche S, Cuniberti G 2011 Phys. Rev. B 83 155416Google Scholar
[19] Zhang Z H, Guo W L, Zeng X C 2010 Phys. Rev. B 82 235423Google Scholar
[20] Wang Z F, Li Q X, Zheng H X, Ren H, Su H B, Shi Q W, Chen J 2007 Phys. Rev. B 75 113406Google Scholar
[21] Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920Google Scholar
[22] Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571Google Scholar
[23] Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411Google Scholar
[24] Ozaki T, Nishio K, Weng H M, Kino H 2010 Phys. Rev. B 81 075422Google Scholar
[25] 邓小清, 孙琳, 李春先 2016 65 068503Google Scholar
Deng X Q, Sun L, Li C X 2016 Acta Phys. Sin. 65 068503Google Scholar
[26] 李彪, 徐大海, 曾晖 2014 63 117102Google Scholar
Li B, Xu D H, Zeng H 2014 Acta Phys. Sin. 63 117102Google Scholar
[27] 林琦, 陈余行, 吴建宝, 孔宗敏 2011 60 097103
Lin Q, Chen Y X, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese)
[28] 李骏, 张振华, 王成志, 邓小清, 范志强 2013 62 036103
Li J, Zhang Z H, Wang C Z, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 036103 (in Chinese)
[29] 胡小会, 许俊敏, 孙立涛 2012 61 047106
Hu X H, Xu J M, Su L T 2012 Acta Phys. Sin. 61 047106 (in Chinese)
[30] 王鼎, 张振华, 邓小清, 范志强 2013 62 207101Google Scholar
Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta. Phys. Sin. 62 207101Google Scholar
[31] Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209Google Scholar
[32] Zhang Y, Yan X H, Guo Y D, Xiao Y 2017 J. Appl. Phys. 121 174303Google Scholar
[33] Li H D, Wang L, Lan Z H, Zheng Y S 2009 Phys. Rev. B 79 155429Google Scholar
[34] Xu B, Yin J, Weng H G, Xia Y D, Wan X G, Liu Z G 2010 Phys. Rev. B 81 205419Google Scholar
[35] Wang B, Wang J, Guo H 2009 Phys. Rev. B 79 165417Google Scholar
[36] Ozaki T, Kino H 2005 Phys. Rev. B 72 045121Google Scholar
[37] Tersoff J, Hamann D R 1985 Phys. Rev. B 31 805Google Scholar
[38] Chantis A N, Smith D L, Fransson J, Balatsky A V 2009 Phys. Rev. B 79 165423Google Scholar
[39] Slonczewski J C 1989 Phys. Rev. B 39 6995Google Scholar
[40] Press M R, Liu F, Khanna S N, Jena P 1989 Phys. Rev. B 40 399Google Scholar
Catalog
Metrics
- Abstract views: 8293
- PDF Downloads: 90
- Cited By: 0