-
By using the first-principles method based on the density-functional theory, twisting- deformation-dependent electrical characteristics of graphene nanoribbons (GNRs) are studied systematically. It is shown that the energy gap of the zigzag-edge graphene nanoribbon (ZGNR) is the most insensitive to twisting deformation, and it almost keeps metallicity unchanged, next is the armchair-edge graphene nanoribbons (AGNRs) by width W=3p-1 (p is a positive integer), and its gap has only a small change when twisting deformation occurs. However, the gap of AGNR with width W=3p+1 is extremely sensitive to twisting deformation, and it can display a variation from wide-gap semiconductor to moderate-gap semiconductor, quasi-metal, and metal, next is AGNR with W=3p. In other words, the larger the band gap for GNR in the absence of twisting deformation, the more significant the change (becoming small) of its band gap with twisting deformation. Additionally, for the whole electronic structure and transmission behavior, one can find that there is a much larger influence under twisting deformation in AGNR than in ZGNR. These studies suggest that it is necessary to take the effect of twisting deformation on the electrical characteristics into account in designing GNR-based nanodevices.
-
Keywords:
- graphene nanoribbon /
- energy band structure /
- twisting deformation /
- density- functional theory
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Berger C, Song Z M, Li X B, Wu X S, Brown N, Didier M, Li T B, Joanna H, Alexei N, Edward H C, Phillip N F, Walt de Heer A 2006 Science 312 1191
[3] Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469
[4] Wang J J, Zhu M Y, Outlaw R A, Zhao X, Manos D M, Holloway B C, Mammana V P 2004 Appl. Phys. Lett. 85 1265
[5] Yuan J M, Mao Y L 2011 Acta Phys. Sin. 60 103103 (in Chinese) [袁健美, 毛宇亮 2011 60 103103]
[6] Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]
[7] Zeng J, Chen K Q, He J, Zhang X J, Hu W P 2011 Organic Electronics 12 1606
[8] Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter 21 235501
[9] Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[10] Son Y, Cohen M L, Louie S G 2006 Nature 444 347
[11] Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 58 4132]
[12] Ouyang F P, Xiao J, Guo R, Zhang H, Xu H 2009 Nanotechnology 20 055202
[13] Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502
[14] Sun L, Li Q X, Ren H, Su H B, Shi Q W, Yang J L 2008 J. Chem. Phys. 129 074704
[15] Sadrzadeh A, Hua M, Boris I Y 2011 Appl. Phys. Lett. 99 013102
[16] Zhu L Y, Wang J L, Zhang T T, Ma L, Lim C W, Ding F, Zeng X C 2010 Nano Lett. 10 494
[17] Zheng X H, Song L L Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129
[18] Huang Y, Wu J, Hwang K C 2006 Phys. Rev. B 74 245413
[19] Xu Z, Buehler M J 2010 ACS Nano 4 3869
[20] Shenoy V B, Reddy C D, Ramasubramaniam A, Zhang Y W 2008 Phys. Rev. Lett. 101 245501
[21] Bets K V, Yakobson B I 2009 Nano Res. 2 161166
[22] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407
[23] Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[24] Zeng J, Chen K Q, Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Berger C, Song Z M, Li X B, Wu X S, Brown N, Didier M, Li T B, Joanna H, Alexei N, Edward H C, Phillip N F, Walt de Heer A 2006 Science 312 1191
[3] Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469
[4] Wang J J, Zhu M Y, Outlaw R A, Zhao X, Manos D M, Holloway B C, Mammana V P 2004 Appl. Phys. Lett. 85 1265
[5] Yuan J M, Mao Y L 2011 Acta Phys. Sin. 60 103103 (in Chinese) [袁健美, 毛宇亮 2011 60 103103]
[6] Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]
[7] Zeng J, Chen K Q, He J, Zhang X J, Hu W P 2011 Organic Electronics 12 1606
[8] Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter 21 235501
[9] Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[10] Son Y, Cohen M L, Louie S G 2006 Nature 444 347
[11] Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 58 4132]
[12] Ouyang F P, Xiao J, Guo R, Zhang H, Xu H 2009 Nanotechnology 20 055202
[13] Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502
[14] Sun L, Li Q X, Ren H, Su H B, Shi Q W, Yang J L 2008 J. Chem. Phys. 129 074704
[15] Sadrzadeh A, Hua M, Boris I Y 2011 Appl. Phys. Lett. 99 013102
[16] Zhu L Y, Wang J L, Zhang T T, Ma L, Lim C W, Ding F, Zeng X C 2010 Nano Lett. 10 494
[17] Zheng X H, Song L L Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129
[18] Huang Y, Wu J, Hwang K C 2006 Phys. Rev. B 74 245413
[19] Xu Z, Buehler M J 2010 ACS Nano 4 3869
[20] Shenoy V B, Reddy C D, Ramasubramaniam A, Zhang Y W 2008 Phys. Rev. Lett. 101 245501
[21] Bets K V, Yakobson B I 2009 Nano Res. 2 161166
[22] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407
[23] Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[24] Zeng J, Chen K Q, Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032
Catalog
Metrics
- Abstract views: 7810
- PDF Downloads: 1555
- Cited By: 0