Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electron transport properties of isomeric quinoline molecule junction sandwiched between graphene nanoribbon electrodes

Zuo Min Liao Wen-Hu Wu Dan Lin Li-E

Citation:

Electron transport properties of isomeric quinoline molecule junction sandwiched between graphene nanoribbon electrodes

Zuo Min, Liao Wen-Hu, Wu Dan, Lin Li-E
PDF
HTML
Get Citation
  • Since graphene was successfully obtained in the end of 2004, the research on graphene and relevant devices has attracted extensive attention. The armchair- and zigzag-edge graphene nanoribbons, as the building blocks, are often used to design the graphene-based molecular electronic devices. Quinoline, an important intermediate between metallurgical dyes and polymers, is an organic conjugated small molecule which is simple in structure and easy to synthesize and modify the chemical structure, and quinoline has become one of the research focuses in the field of molecular electronic devices in recent years. From the physical point of view, the transport properties of the isomeric quinoline molecular electronic devices connected with graphene nanoribbon electrodes can provide a theoretical basis for designing and manufacturing molecular electronic devices with excellent performance. Based on the first-principles calculation method combining the density functional theory and non-equilibrium Green's function, this paper systematically investigates the transport properties of the carbon-linked isomeric quinoline molecule electronic devices sandwiched between the graphene nanoribbon electrodes. The obtained results show that the device current presents a linear change in a bias voltage range [–0.3 V, +0.3 V], the current decreases with the increase of the absolute bias voltage, separately, in a range of [+0.5 V, +0.8 V] and [–0.4 V, –0.9 V], demonstrating a strong negative differential resistance effect. On the other hand, the interesting negative differential resistance effect is remained when there is an angle between the quinoline molecular plane and the graphene nanoribbon electrode; the current of the device is found to be independent of the rotation direction of quinoline molecule in the central region; the current of the device should be forbidden when the quinoline molecule plane is rotated to a direction vertical to the graphene nanoribbon electrodes. The obtained results can provide a theoretical basis for designing and manufacturing the molecular switches and negative differential resistance devices based on isomeric quinoline molecular electronic devices.
      Corresponding author: Liao Wen-Hu, whliao@jsu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11664010, 11264013), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2017JJ2217, 12JJ4003), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 18A293), and the Research Program of Jishou University, China (Grant Nos. JGY201851, Jdy1849, Jdy19039)
    [1]

    Gimzewski J K, Joachim C 1999 Science 283 1683Google Scholar

    [2]

    Aviram A 1989 Angew. Chem. 101 536Google Scholar

    [3]

    Zhao P, Fang C, Xia C, Wang Y, Liu D, Xie S 2008 Appl. Phys. Lett. 93 013113Google Scholar

    [4]

    Fu Q, Yang J, Luo Y 2009 Appl. Phys. Lett. 95 182103Google Scholar

    [5]

    An Y P, Yang Z, Ratner M A 2011 J. Chem. Phys. 135 044706Google Scholar

    [6]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2012 Org. Electron. 13 2954Google Scholar

    [7]

    Pan J, Zhang Z, Deng X, Qiu M, Guo C 2010 Appl. Phys. Lett. 97 203104Google Scholar

    [8]

    Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502Google Scholar

    [9]

    Wu Q H, Zhao P, Liu D S 2014 Acta Phys. Chim. Sin. 30 53

    [10]

    Ren H, Li Q X, Luo Y, Yang J 2009 Appl. Phys. Lett. 94 173110Google Scholar

    [11]

    Geng H, Hu Y, Shuai Z, Xia K, Gao H, Chen K 2007 J. Phys. Chem. C 111 19098Google Scholar

    [12]

    Zhang J J, Zhang Z H, Guo C, Li J, Deng X Q 2012 Acta Phys. Chim. Sin. 28 1701

    [13]

    Zhang X, Chen K, Long M, He J, Gao Y 2015 Mod. Phys. Lett. B 29 1550106Google Scholar

    [14]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [15]

    Zhang D, Long M, Zhang X, Ouyang F, Li M, Xu H 2015 J. Appl. Phys. 117 014311Google Scholar

    [16]

    Cui L L, Long M Q, Zhang X J, Li X M, Zhang D, Yang B C 2016 Phys. Lett. A 380 730Google Scholar

    [17]

    Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B 2016 Science 352 1443Google Scholar

    [18]

    Wen H M, Yang Y, Zhou X S, Liu J Y, Zhang D B, Chen Z B, Wang J Y, Chen Z N, Tian Z Q 2013 Chem. Sci. 4 2471Google Scholar

    [19]

    Metzger R M 2003 Chem. Rev. 103 3803Google Scholar

    [20]

    Chung A, Deen J, Lee J S, Meyyappan M 2010 Nanotechnology 21 412001Google Scholar

    [21]

    Chen J, Reed M, Rawlett A, Tour J 1999 Science 286 1550Google Scholar

    [22]

    Joachim C, Gimzewski J K, Schlittler R R, Chavy C 1995 Phys. Rev. Lett. 74 2102Google Scholar

    [23]

    Wan H, Zhou B, Chen X, Sun C Q, Zhou G 2012 J. Phys. Chem. C 116 2570Google Scholar

    [24]

    Danilov A V, Hedegård P, Golubev D S, Bjørnholm T, Kubatkin S E 2008 Nano Lett. 8 2393Google Scholar

    [25]

    Bumm L, Arnold J, Cygan M, Dunbar T, Burgin T, Jones L, Allara D L, Tour J M, Weiss P 1996 Science 271 1705Google Scholar

    [26]

    Reed M A, Zhou C, Muller C, Burgin T, Tour J 1997 Science 278 252Google Scholar

    [27]

    Chen J, Wang W, Reed M, Rawlett A, Price D, Tour J 2000 Appl. Phys. Lett. 77 1224Google Scholar

    [28]

    Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nature 442 904Google Scholar

    [29]

    Quinn J R, Foss Jr F W, Venkataraman L, Hybertsen M S, Breslow R 2007 J. Am. Chem. Soc. 129 6714Google Scholar

    [30]

    Fu W, Xu Z, Bai X, Gu C, Wang E 2009 Nano Lett. 9 921Google Scholar

    [31]

    Wang J, Zhu M, Outlaw R, Zhao X, Manos D, Holloway B, Mammana V 2004 Appl. Phys. Lett. 85 1265Google Scholar

    [32]

    Lin Z, Jun W 2014 Chin. Phys. B 23 087202Google Scholar

    [33]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [34]

    王雪梅, 刘红 2011 60 047102Google Scholar

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102Google Scholar

    [35]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229Google Scholar

    [36]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [37]

    Wen B, Cao M S, Lu M M, Cao W Q, Shi H G, Liu J, Wang X X, Jin H B, Fang X Y, Wang W Z 2014 Adv. Mater. 26 3484Google Scholar

    [38]

    Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y, Yuan J 2019 Annalen Der Physik 531 1800390Google Scholar

    [39]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [40]

    Zhang M, Wang X X, Cao W Q, Yuan J, Cao M S 2019 Adv. Opt. Mater. 4 1900689

    [41]

    Fang X Y, Yu X X, Zheng H M, Jin H B, Wang L, Cao M S 2015 Phys. Lett. A 379 2245Google Scholar

    [42]

    Cao M S, Wang X X, Cao W Q, Fang X Y, Wen B, Yuan J 2018 Small 14 1800987Google Scholar

    [43]

    Cao W Q, Wang X X, Yuan J, Wang W Z, Cao M S 2015 J. Mater. Chem. C 3 10017Google Scholar

    [44]

    Wen B, Cao M S, Hou Z L, Song W L, Zhang L, Lu M M, Jin H B, Fang X Y, Wang W Z, Yuan J 2013 Carbon 65 124Google Scholar

    [45]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [46]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104Google Scholar

    [47]

    Waldron D, Haney P, Larade B, MacDonald A, Guo H 2006 Phys. Rev. Lett. 96 166804Google Scholar

    [48]

    Waldron D, Timoshevskii V, Hu Y, Xia K, Guo H 2006 Phys. Rev. Lett. 97 226802Google Scholar

    [49]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048Google Scholar

    [50]

    Copple A, Ralston N, Peng X 2012 Appl. Phys. Lett. 100 193108Google Scholar

    [51]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [52]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785Google Scholar

    [53]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [54]

    Hammer B, Hansen L, Nørskov J 1999 Phys. Rev. B 59 7413Google Scholar

    [55]

    Guo B, Liu Q, Chen E, Zhu H, Fang L, Gong J R 2010 Nano Lett. 10 4975Google Scholar

    [56]

    Datta S 1997 Electronic Transport in Mesoscopic Systems (2nd ed.) (The United Kingdom: Cambridge University Press) pp102−112

  • 图 1  由半无限长锯齿型石墨烯纳米带左电极/中心散射区/半无限长锯齿型石墨烯纳米带右电极组成的ZGNR/C9H5N/ZGNR分子电子器件结构示意图, 红色方框区域表示中心散射区 (a)—(c)分别对应喹啉C9H5N分子中氮原子N处于编号2, 3和5处; (d)和(e)给出喹啉C9H5N分子平面与石墨烯纳米带电极平面成0°和90°时的模型

    Figure 1.  ZGNR/C9H5N/ZGNR molecular electronic device schematic diagram consisted of a semi-infinite ZGNR left electrode/a central scattering region/a semi-infinite right ZGNR electrode, the red dashed line area represents the central scattering region. (a)−(c) denotes the marked 2nd, 3rd and 5th N atom of the C9H5N molecular; (d) and (e) illustrates the model of the 0° and 90° angle between the C9H5N molecule and graphene nanoribbon electrodes, respectively.

    图 2  器件电流-电压(I-V)曲线(a)和电导(b)

    Figure 2.  The current-voltage (I-V) curve (a) and conductance (b) of the device.

    图 3  器件(a) M1、(b) M2和(c) M3在0, ±0.4 V, ±0.9 V以及±1.5 V偏压下的透射谱, 图中的黑色虚线和阴影部分面积分别表示偏压窗和偏压窗内的透射系数积分面积

    Figure 3.  The transmission spectrum of the device (a) M1, (b) M2 and (c) M3 under the bias voltage of 0, ±0.4 V, ±0.9 V and ±1.5 V, where the (black) dashed lines and shaded area denote the bias window and the integrated area of the transmission coefficient in the bias window, respectively.

    图 4  M1器件喹啉C9H5N分子平面与石墨烯纳米带电极成0°, 30°, 45°, 60°, 90°和–90°的(a)I-V曲线和(b)电导

    Figure 4.  The (a) I-V curve and (b) conductance of the M1 device when the angle between the C9H5N molecule and graphene nanoribbon electrodes is 0°, 30°, 45°, 60°, 90° and –90°, respectively.

    图 5  偏压0, ± 0.3 V, ± 0.9 V以及 ± 1.5 V下喹啉C9H5N分子平面与石墨烯纳米带电极分别成 (a) 0°, (b) 30°, (c) 45°, (d) 60°和(e) 90°时的透射谱, 图中的黑色虚线和阴影部分面积分别表示偏压窗和偏压窗内透射系数积分面积

    Figure 5.  The transmission spectra for the angle between the C9H5N molecules and graphene nanoribbon electrodes is (a) 0°, (b) 30°, (c) 45°, (d) 60° and (e) 90°, respectively, under the bias voltage of 0, ± 0.3 V, ± 0.9 V and ± 1.5 V, where the (black) dashed lines and shaded area denote the bias window and the integrated area of the transmission coefficient in the bias window, respectively.

    图 6  零偏压下, 喹啉C9H5N分子平面与石墨烯纳米带电极成0°, 30°, 45°, 60°, 90°和–90°角度下的透射谱, 其中红色虚线表示费米能级

    Figure 6.  The transmission spectrum of the C9H5N molecule and the ZGNR electrodes at the angle of 0°, 30°, 45°, 60°, 90° and –90° under the 0 bias, where the (red) dashed line denotes the Fermi level.

    图 7  零偏压下, 喹啉C9H5N分子平面与石墨烯纳米带电极成 (a) 0°, (b) 60°, (c) 90°和(d) –90°时的实空间电荷密度

    Figure 7.  The real space charge density for the angle between the C9H5N molecule and graphene nanoribbon electrodes is (a) 0°, (b) 60°, (c) 90° and (d) –90°, respectively under the 0 bias voltage.

    Baidu
  • [1]

    Gimzewski J K, Joachim C 1999 Science 283 1683Google Scholar

    [2]

    Aviram A 1989 Angew. Chem. 101 536Google Scholar

    [3]

    Zhao P, Fang C, Xia C, Wang Y, Liu D, Xie S 2008 Appl. Phys. Lett. 93 013113Google Scholar

    [4]

    Fu Q, Yang J, Luo Y 2009 Appl. Phys. Lett. 95 182103Google Scholar

    [5]

    An Y P, Yang Z, Ratner M A 2011 J. Chem. Phys. 135 044706Google Scholar

    [6]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2012 Org. Electron. 13 2954Google Scholar

    [7]

    Pan J, Zhang Z, Deng X, Qiu M, Guo C 2010 Appl. Phys. Lett. 97 203104Google Scholar

    [8]

    Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502Google Scholar

    [9]

    Wu Q H, Zhao P, Liu D S 2014 Acta Phys. Chim. Sin. 30 53

    [10]

    Ren H, Li Q X, Luo Y, Yang J 2009 Appl. Phys. Lett. 94 173110Google Scholar

    [11]

    Geng H, Hu Y, Shuai Z, Xia K, Gao H, Chen K 2007 J. Phys. Chem. C 111 19098Google Scholar

    [12]

    Zhang J J, Zhang Z H, Guo C, Li J, Deng X Q 2012 Acta Phys. Chim. Sin. 28 1701

    [13]

    Zhang X, Chen K, Long M, He J, Gao Y 2015 Mod. Phys. Lett. B 29 1550106Google Scholar

    [14]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [15]

    Zhang D, Long M, Zhang X, Ouyang F, Li M, Xu H 2015 J. Appl. Phys. 117 014311Google Scholar

    [16]

    Cui L L, Long M Q, Zhang X J, Li X M, Zhang D, Yang B C 2016 Phys. Lett. A 380 730Google Scholar

    [17]

    Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B 2016 Science 352 1443Google Scholar

    [18]

    Wen H M, Yang Y, Zhou X S, Liu J Y, Zhang D B, Chen Z B, Wang J Y, Chen Z N, Tian Z Q 2013 Chem. Sci. 4 2471Google Scholar

    [19]

    Metzger R M 2003 Chem. Rev. 103 3803Google Scholar

    [20]

    Chung A, Deen J, Lee J S, Meyyappan M 2010 Nanotechnology 21 412001Google Scholar

    [21]

    Chen J, Reed M, Rawlett A, Tour J 1999 Science 286 1550Google Scholar

    [22]

    Joachim C, Gimzewski J K, Schlittler R R, Chavy C 1995 Phys. Rev. Lett. 74 2102Google Scholar

    [23]

    Wan H, Zhou B, Chen X, Sun C Q, Zhou G 2012 J. Phys. Chem. C 116 2570Google Scholar

    [24]

    Danilov A V, Hedegård P, Golubev D S, Bjørnholm T, Kubatkin S E 2008 Nano Lett. 8 2393Google Scholar

    [25]

    Bumm L, Arnold J, Cygan M, Dunbar T, Burgin T, Jones L, Allara D L, Tour J M, Weiss P 1996 Science 271 1705Google Scholar

    [26]

    Reed M A, Zhou C, Muller C, Burgin T, Tour J 1997 Science 278 252Google Scholar

    [27]

    Chen J, Wang W, Reed M, Rawlett A, Price D, Tour J 2000 Appl. Phys. Lett. 77 1224Google Scholar

    [28]

    Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nature 442 904Google Scholar

    [29]

    Quinn J R, Foss Jr F W, Venkataraman L, Hybertsen M S, Breslow R 2007 J. Am. Chem. Soc. 129 6714Google Scholar

    [30]

    Fu W, Xu Z, Bai X, Gu C, Wang E 2009 Nano Lett. 9 921Google Scholar

    [31]

    Wang J, Zhu M, Outlaw R, Zhao X, Manos D, Holloway B, Mammana V 2004 Appl. Phys. Lett. 85 1265Google Scholar

    [32]

    Lin Z, Jun W 2014 Chin. Phys. B 23 087202Google Scholar

    [33]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [34]

    王雪梅, 刘红 2011 60 047102Google Scholar

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102Google Scholar

    [35]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229Google Scholar

    [36]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [37]

    Wen B, Cao M S, Lu M M, Cao W Q, Shi H G, Liu J, Wang X X, Jin H B, Fang X Y, Wang W Z 2014 Adv. Mater. 26 3484Google Scholar

    [38]

    Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y, Yuan J 2019 Annalen Der Physik 531 1800390Google Scholar

    [39]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [40]

    Zhang M, Wang X X, Cao W Q, Yuan J, Cao M S 2019 Adv. Opt. Mater. 4 1900689

    [41]

    Fang X Y, Yu X X, Zheng H M, Jin H B, Wang L, Cao M S 2015 Phys. Lett. A 379 2245Google Scholar

    [42]

    Cao M S, Wang X X, Cao W Q, Fang X Y, Wen B, Yuan J 2018 Small 14 1800987Google Scholar

    [43]

    Cao W Q, Wang X X, Yuan J, Wang W Z, Cao M S 2015 J. Mater. Chem. C 3 10017Google Scholar

    [44]

    Wen B, Cao M S, Hou Z L, Song W L, Zhang L, Lu M M, Jin H B, Fang X Y, Wang W Z, Yuan J 2013 Carbon 65 124Google Scholar

    [45]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [46]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104Google Scholar

    [47]

    Waldron D, Haney P, Larade B, MacDonald A, Guo H 2006 Phys. Rev. Lett. 96 166804Google Scholar

    [48]

    Waldron D, Timoshevskii V, Hu Y, Xia K, Guo H 2006 Phys. Rev. Lett. 97 226802Google Scholar

    [49]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048Google Scholar

    [50]

    Copple A, Ralston N, Peng X 2012 Appl. Phys. Lett. 100 193108Google Scholar

    [51]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [52]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785Google Scholar

    [53]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [54]

    Hammer B, Hansen L, Nørskov J 1999 Phys. Rev. B 59 7413Google Scholar

    [55]

    Guo B, Liu Q, Chen E, Zhu H, Fang L, Gong J R 2010 Nano Lett. 10 4975Google Scholar

    [56]

    Datta S 1997 Electronic Transport in Mesoscopic Systems (2nd ed.) (The United Kingdom: Cambridge University Press) pp102−112

  • [1] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [2] Lin Yi-Ni, Ma Li, Yang Quan, Geng Song-Chao, Ye Mao-Sheng, Chen Tao, Sun Li-Ning. Electron transport properties of carbon nanotubes with radial compression deformation. Acta Physica Sinica, 2022, 71(2): 027301. doi: 10.7498/aps.71.20211370
    [3] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [4] Electron transport properties of carbon nanotubes with radial compression deformation. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211370
    [5] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [6] Chen Wei, Chen Run-Feng, Li Yong-Tao, Yu Zhi-Zhou, Xu Ning, Bian Bao-An, Li Xing-Ao, Wang Lian-Hui. Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes. Acta Physica Sinica, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [7] Zhang Hua-Lin, Sun Lin, Wang Ding. Electromagnetic properties of zigzag graphene nanoribbons with single-row line defect. Acta Physica Sinica, 2016, 65(1): 016101. doi: 10.7498/aps.65.016101
    [8] Deng Xiao-Qing, Sun Lin, Li Chun-Xian. Spin transport properties for iron-doped zigzag-graphene nanoribbons interface. Acta Physica Sinica, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [9] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [10] Li Jun, Zhang Zhen-Hua, Wang Chen-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Rolling effects on electronic characteristics for graphene nanoribbons. Acta Physica Sinica, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [11] Zeng Yong-Chang, Tian Wen, Zhang Zhen-Hua. Electronic properties of graphene nanoribbons with periodical nanoholes passivated by oxygen. Acta Physica Sinica, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [12] Liu Yuan, Yao Jie, Chen Chi, Miao Ling, Jiang Jian-Jun. First-principles study on the piezoelectric properties of hydrogen modified graphene nanoribbons. Acta Physica Sinica, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [13] Wang Wei-Dong, Hao Yue, Ji Xiang, Yi Cheng-Long, Niu Xiang-Yu. Relaxation properties of graphene nanoribbons at different ambient temperatures: a molecular dynamics study. Acta Physica Sinica, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [14] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei. The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Acta Physica Sinica, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [15] Ma Li, Tan Zhen-Bing, Tan Chang-Ling, Liu Guang-Tong, Yang Chang-Li, Lü Li. Fabrication of graphene nanoribbons through mechanical cleavage and their electronic transport properties at low temperature. Acta Physica Sinica, 2011, 60(10): 107302. doi: 10.7498/aps.60.107302
    [16] Tao Qiang, Hu Xiao-Ying, Zhu Pin-Wen. Electronic structure of zigzag graphene nanoribbin terminated by hydroxyl. Acta Physica Sinica, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [17] Gu Fang, Zhang Jia-Hong, Yang Li-Juan, Gu Bin. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Physica Sinica, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [18] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [19] Hu Hai-Xin, Zhang Zhen-Hua, Liu Xin-Hai, Qiu Ming, Ding Kai-He. Tight binding studies on the electronic structure of graphene nanoribbons. Acta Physica Sinica, 2009, 58(10): 7156-7161. doi: 10.7498/aps.58.7156
    [20] Chen Jiang-Wei, Yang Lin-Feng. Electron transport properties of the finite double-walled carbon nanotubes. Acta Physica Sinica, 2005, 54(5): 2183-2187. doi: 10.7498/aps.54.2183
Metrics
  • Abstract views:  8200
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  27 July 2019
  • Accepted Date:  23 September 2019
  • Available Online:  26 November 2019
  • Published Online:  05 December 2019

/

返回文章
返回
Baidu
map